Evaluate: ∫ π 0 X Sin X 1 + 3 Cos 2 X D X . - Mathematics

Advertisement Remove all ads
Sum

Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.

Advertisement Remove all ads

Solution

Let `"I" = int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`  ...(i) 

 

⇒ `"I" = int_0^pi ((pi-"x")sin(pi-"x"))/(1+3cos^2(pi-"x"))d"x"`


= `int_0^pi (pisin"x")/(1+3cos^2"x")d"x" - int_0^pi (xsin"x")/(1+3cos^2"x")d"x"`        ...(ii)

Adding (i) & (ii), we have

we get: `2"I" = int_0^pi(pisin"x")/(1+3 cos^2 "x")` dx

Put cos x = t
⇒ - sin x dx = dt, when x = 0 

⇒ t = 1, for x = π ⇒ t = - 1

So, `2I = π int_1^-1 dt/(1 + 3t^2)`

 

⇒ `π/3 int_-1^1 (dt)/((1/sqrt3)^2 + (t)^2)`

 

⇒ `π/3 xx sqrt3 [tan^-1(sqrt3t)]_-1^1`

⇒ `(sqrt3π)/3 [ tan^-1sqrt3 - ( - tan^-1 sqrt3)]`

I = `(sqrt3π)/3. π/3 = sqrt3π^2/9`

Concept: Properties of Definite Integrals
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×