Advertisement Remove all ads

Evaluate ∫ ∞ 0 E − X 2 √ X D X - Applied Mathematics 2

Sum

Evaluate `int_0^oo e^(-x^2)/sqrtxdx`

Advertisement Remove all ads

Solution

Let I = `int_0^oo e^(-x^2)/sqrtxdx`

Put `x^2=t =>x=sqrtt =>sqrtx=t^(1/4)`

Differentiate w.r.t x,

`therefore dx=1/(2sqrtt)dt             lim->[0,oo]`

`therefore "I"=int_0^ooe^(-t)/1t^((-3)/4)/2dt`

`therefore "I"=1/2 int_0^ooe^(-t)t^(1/4 1)dt`

But we know that ,

`int_0^ooe^(-t).t^(n-1)dt`=𝒈𝒂𝒎𝒎𝒂(𝒏)

`therefore "I"=1/2gamma(1/4)`    ……………..{By the definition of gamma fn}

Concept: Beta and Gamma Functions and Its Properties
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×