Advertisement Remove all ads

Evaluate ∫ ∞ 0 3 − 4 X 2 D X - Applied Mathematics 2

Evaluate `int_0^∞ 3^(-4x^2) dx` 

Advertisement Remove all ads

Solution

Let l= `int_0^∞ 3^(-4x^2) dx`  

put `3^(-4x^2) =  e^-1` 

taking log on both sides, 

`4x^2log 3 =t`  

`x^2= t / (4 log 3)` 

`x^2 = t/(4 log 3)  =>  x = sqrt t/(2 sqrt( log3))`

diff. w.r.t x, 

`dc= t^(-1/2)/(4sqrt log^3) dt`           `  Lim =[0,∞]>` 

∴ I = `int _0 ^∞ e^-t/(4 sqrt log 3) t^(-1/2)` 

∴` I=1/(4sqrt3)int_0^∞ e^-t. t^(-1/2)dt` 

∴ `I = 1=sqrtpi/(4 log 3)`         ....................`{int _0^∞ e^-t.t^-1/2 dt=sqrtpi}`

 

Concept: Legendre’S Differential Equation
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×