#### My Profile

1. Inform you about time table of exam.

2. Inform you about new question papers.

3. New video tutorials information.

#### Question

A line passes through (2, −1, 3) and is perpendicular to the lines `vecr=(hati+hatj-hatk)+lambda(2hati-2hatj+hatk) and vecr=(2hati-hatj-3hatk)+mu(hati+2hatj+2hatk)` . Obtain its equation in vector and Cartesian from.

#### Solution

#### Appears in these question papers

#### Similar questions VIEW ALL

The Cartesian equations of line are 3x -1 = 6y + 2 = 1 - z. Find the vector equation of line.

If a line drawn from the point A( 1, 2, 1) is perpendicular to the line joining P(1, 4, 6) and Q(5, 4, 4) then find the co-ordinates of the foot of the perpendicular.

The Cartestation equation of line is `(x-6)/2=(y+4)/7=(z-5)/3` find its vector equation.

Find the value of p, so that the lines `l_1:(1-x)/3=(7y-14)/p=(z-3)/2 and l_2=(7-7x)/3p=(y-5)/1=(6-z)/5 ` are perpendicular to each other. Also find the equations of a line passing through a point (3, 2, – 4) and parallel to line l_{1}.

Find the vector and Cartesian equations of the line through the point (1, 2, −4) and perpendicular to the two lines.

`vecr=(8hati-19hatj+10hatk)+lambda(3hati-16hatj+7hatk) " and "vecr=(15hati+29hatj+5hatk)+mu(3hati+8hatj-5hatk)`