###### Advertisements

###### Advertisements

Electromagnetic waves are produced by ______.

#### Options

Static charge

Accelerating charge

Charge less particle

A moving charge

###### Advertisements

#### Solution

Electromagnetic waves are produced by **Accelerating charge**.

#### RELATED QUESTIONS

Write mathematical expressions for electric and magnetic fields of an electromagnetic wave propagating along the z-axis.

Suppose that the electric field amplitude of an electromagnetic wave is E_{0} = 120 N/C and that its frequency is v = 50.0 MHz.

**(a)** Determine, B_{0}, ω, k, and λ.

**(b)** Find expressions for E and B.

How is the speed of em-waves in vacuum determined by the electric and magnetic field?

Do electromagnetic waves carry energy and momentum ?

Identify the electromagnetic waves whose wavelengths vary as:

(a) 10^{–12} m < λ < 10^{–8} m

(b) 10^{–3} m < λ < 10^{–1} m

Write one use for each.

Draw a sketch of linearly polarized em waves propagating in the Z-direction. Indicate the directions of the oscillating electric and magnetic fields.

What is the ratio of the speed of gamma rays to that of radio waves in a vacuum?

How are electric vector `(vec "E")`, magnetic vector `(vec "B")` and velocity vector `(vec "C")` oriented in an electromagnetic wave?

Write the expression for speed of electromagnetic waves in a medium of electrical permittivity ε and magnetic permeability μ.

Arrange the following electromagnetic waves in decreasing order of wavelength:

Write the following radiations in ascending order with respect to their frequencies:

X-rays, microwaves, UV rays and radio waves.

How does a charge q oscillating at certain frequency produce electromagnetic waves?

Sketch a schematic diagram depicting electric and magnetic fields for an electromagnetic wave propagating along the Z-direction.

A wire carries an alternating current i = i_{0} sin ωt. Is there an electric field in the vicinity of the wire?

A plane electromagnetic wave is passing through a region. Consider (a) electric field (b) magnetic field (c) electrical energy in a small volume and (d) magnetic energy in a small volume. Construct the pairs of the quantities that oscillate with equal frequencies.

An electromagnetic wave going through vacuum is described by

E = E_{0} sin (kx − ωt); B = B_{0} sin (kx − ωt).

Which of the following equations is true?

Displacement current goes through the gap between the plates of a capacitor when the charge of the capacitor

(a) increases

(b) decreases

(c) does not change

(d) is zero

Which of the following have zero average value in a plane electromagnetic wave?

(a) Electric field

(b) Magnetic field

(c) Electric energy

(d) Magnetic energy

Consider the situation of the previous problem. Define displacement resistance R_{d} = V/i_{d}of the space between the plates, where V is the potential difference between the plates and i_{d} is the displacement current. Show that R_{d} varies with time as `R_d = R(e^(t"/"tau) - 1)` .

The energy associated with light of which of the following colours is minimum :

This is an example of step-up transformer .

Define frequency modulation and state any one advantage of frequency modulation (FM) over amplitude modulation (AM).

State any one property which is common to all electromagnetic waves.

The energy levels of an atom of a certain element are shown in the given figure. Which one of the transitions A, B, C, D or E will result in the emission of photons of electromagnetic radiation of wavelength 618.75 nm? Support your answer with mathematical calculations.

How are electromagnetic waves produced? What is the source of the energy carried by a propagating electromagnetic wave?

Identify the electromagnetic radiations used**(i)** In remote switches of a household electronic device; and**(ii)** as a diagnostic tool in medicine

Which of the following electromagnetic radiations is used for viewing objects through fog ______.

Which of the following is false for electromagnetic waves.

Consider an oscillator which has a charged particle oscillating about its mean position with a frequency of 300 MHz. The wavelength of electromagnetic waves produced by this oscillator is ______.

Fraunhofer lines are an example of _______ spectrum.

Which of the following is NOT true for electromagnetic waves?

Why are e.m. waves non-mechanical?

Write a short note on the radio waves.

Discuss the source of electromagnetic waves.

Explain the types of absorption spectrum.

Let an electromagnetic wave propagate along the x-direction, the magnetic field oscillates at a frequency of 10^{10} Hz and has an amplitude of 10^{-5} T, acting along the y – direction. Then, compute the wavelength of the wave. Also write down the expression for the electric field in this case.

Which one of the following does not represent simple harmonic motion? Here y denotes the instantaneous displacement. Here, A and B are constants and co is the angular frequency.

Which of the following electromagnetic radiations has the smallest wave length?

An accelerate electron would produce.

Maxwell's equation describe the fundamental law of

If a source is transmitting electromagnetic waves of frequency 8.2 × 10^{6} Hz. then wavelength of electromagnetic waves transmitted from the source will be.

The velocity of light in vacuum can be changed by changing

The velocity of electromagnetic wave is parallel to

The sun delivers 10^{3}w/m^{2} of electromagnetic flux to the earth's surface. The total power that is incident on a roof of dimension 8m/10m will be

Dimensions of ε_{0} `(d phi_ε)/(dt)` are of

For which frequency of light, the eye is most sensitive?

Which of the following type of radiations are radiated by an oscillating electric charge?

For a plane electromagnetic wave propagating in x-direction, which one of the following combinations gives the correct possible directions for electric field (E) and magnetic field (B) respectively?

For a plane electromagnetic wave propagating in the x-direction, which one of the following combinations gives the correct possible directions for the electric field (E) and magnetic field (B) respectively?

The source of electromagnetic waves can be a charge ______.

- moving with a constant velocity.
- moving in a circular orbit.
- at rest.
- falling in an electric field.

Why is the orientation of the portable radio with respect to broadcasting station important?

A plane EM wave travelling along z direction is described by `E = E_0 sin (kz - ωt)hati` and `B = B_0 sin (kz - ωt)hatj`. show that

- The average energy density of the wave is given by `u_(av) = 1/4 ε_0E_0^2 + 1/4 B_0^2/mu_0`.
- The time averaged intensity of the wave is given by `I_(av) = 1/2 cε_0 E_0^2`.

A plane electromagnetic wave of frequency 500 MHz is travelling in a vacuum along a y-direction.

At a particular point in space and time, `vec"B"` = 8.0 × 10^{-8} `hat"Z"`T. The value of the electric field at this point is ______.

(speed of light = 3 × 10^{8} ms^{-1})

`hat x, hat y, hat z` are unit vectors along x, y, and Z directions.

For an electromagnetic wave travelling in free space, the relation between average energy densities due to electric (U_{e}) and magnetic (U_{m}) fields is ______.

A plane electromagnetic wave, has frequency of 2.0 × 10^{10} Hz and its energy density is 1.02 × 10^{-8} J/m^{3} in vacuum. The amplitude of the magnetic field of the wave is close to `(1/(4piepsilon_0) = 9xx10^9"Nm"^2/"C"^2 "and speed of light" = 3 xx 10^8 "m" "s"^-1)`:

The electric field in a plane electromagnetic wave is given by `vecE = 200cos[((0.5 xx 10^3)/m)x - (1.5 xx 10^11 "rad"/s xx t)]V/mhatj`. If the wave falls normally on a perfectly reflecting surface having an area of 100 cm^{2}. If the radiation pressure exerted by the E.M. wave on the surface during a 10-minute exposure is `x/10^9 N/m^2`. Find the value of x.

Sunlight falls normally on a surface of area 36 cm^{2} and exerts an average force of 7.2 × 10^{-9} N within a time period of 20 minutes. Considering a case of complete absorption the energy flux of incident light is ______.

The electric field in an electromagnetic wave is given by E = 56.5 sin ω(t - x/c)Nc^{-1}. Find the intensity of the wave if it is propagating along x-axis in the free space.

(Given ε_{0} = 8.85 × 10^{-12} C^{2} N^{-1} m^{-2})

A plane electromagnetic wave with frequency of 30 MHz travels in free space. At particular point in space and time, electric field is 6 V/m. The magnetic field at this point will be x × 10^{-8 }T. The value of x is ______.

An electromagnetic wave of frequency 3 GHz enters a dielectric medium of relative electric permittivity 2.25 from vacuum. The wavelength of this wave in that medium will be ______ × 10^{-2} cm.

In a plane electromagnetic wave, the direction of electric field and magnetic field are represented by `hat"k"` and 2`hat"i" - 2hat"j"`, respectively. What is the unit vector along direction of propagation of the wave.

An electromagnetic wave of frequency v = 3.0 MHz passes from vacuum into a dielectric medium with permittivity ∈ = 4.0. Then ______.

Name the electromagnetic wave/radiation which is used to study crystal structure.