Advertisement Remove all ads

# E X + Sin X 1 + Log X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

$\frac{e^x + \sin x}{1 + \log x}$

Advertisement Remove all ads

#### Solution

$\text{ Let } u = e^x + \sin x; v = 1 + \log x$
$\text{ Then }, u' = e^x + \cos x; v' = \frac{1}{x}$
$\text{ Using the quotient rule }:$
$\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}$
$\frac{d}{dx}\left( \frac{e^x + \sin x}{1 + \log x} \right) = \frac{\left( 1 + \log x \right)\left( e^x + \cos x \right) - \left( e^x + \sin x \right)\left( \frac{1}{x} \right)}{\left( 1 + \log x \right)^2}$
$= \frac{x\left( 1 + \log x \right)\left( e^x + \cos x \right) - \left( e^x + \sin x \right)}{x \left( 1 + \log x \right)^2}$

Concept: The Concept of Derivative - Algebra of Derivative of Functions
Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.5 | Q 9 | Page 44

#### Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications

Forgot password?