Advertisement Remove all ads

∫ E X ( 1 − Sin X 1 − Cos X ) D X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
MCQ
\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

Options

  • \[- e^x \tan\frac{x}{2} + C\]
  • \[- e^x \cot\frac{x}{2} + C\]
  • \[- \frac{1}{2} e^x \tan\frac{x}{2} + C\]
  • \[- \frac{1}{2} e^x \cot\frac{x}{2} + C\]
Advertisement Remove all ads

Solution

\[- e^x \cot\frac{x}{2} + C\]
 
 
\[\text{Let }I = \int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right)dx\]
\[ \Rightarrow \int e^x \left( \frac{1}{1 - \cos x} - \frac{\sin x}{1 - \cos x} \right)dx\]
\[ \Rightarrow \int e^x \left( \frac{1}{2 \sin^2 \frac{x}{2}} - \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin^2 \frac{x}{2}} \right)dx\]
\[ \Rightarrow \int e^x \left( \frac{1}{2} {cosec}^2 \frac{x}{2} - \cot \frac{x}{2} \right)dx\]
\[\text{As, we know that }\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx = e^x f\left( x \right) + C\]
\[ \therefore I = - e^x \cot \left( \frac{x}{2} \right) + C\]
Concept: Indefinite Integral Problems
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 12 Maths
Chapter 19 Indefinite Integrals
MCQ | Q 20 | Page 201

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×