# ∫ E X ( 1 − Sin X 1 − Cos X ) D X - Mathematics

MCQ
$\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx$

#### Options

• $- e^x \tan\frac{x}{2} + C$
• $- e^x \cot\frac{x}{2} + C$
• $- \frac{1}{2} e^x \tan\frac{x}{2} + C$
• $- \frac{1}{2} e^x \cot\frac{x}{2} + C$

#### Solution

$- e^x \cot\frac{x}{2} + C$

$\text{Let }I = \int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right)dx$
$\Rightarrow \int e^x \left( \frac{1}{1 - \cos x} - \frac{\sin x}{1 - \cos x} \right)dx$
$\Rightarrow \int e^x \left( \frac{1}{2 \sin^2 \frac{x}{2}} - \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin^2 \frac{x}{2}} \right)dx$
$\Rightarrow \int e^x \left( \frac{1}{2} {cosec}^2 \frac{x}{2} - \cot \frac{x}{2} \right)dx$
$\text{As, we know that }\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx = e^x f\left( x \right) + C$
$\therefore I = - e^x \cot \left( \frac{x}{2} \right) + C$
Concept: Indefinite Integral Problems
Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 12 Maths
Chapter 19 Indefinite Integrals
MCQ | Q 20 | Page 201