Advertisement Remove all ads

∫ E 3 X 4 E 6 X − 9 D X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
Advertisement Remove all ads

Solution

\[\int\frac{e^{3x} dx}{4 e^{6x} - 9}\]
\[\text{let }e^{3x} = t\]
\[ \Rightarrow e^{3x} \times 3dx = dt\]
\[ \Rightarrow e^{3x} dx = \frac{dt}{3}\]
\[Now, \int\frac{e^{3x} dx}{4 e^{6x} - 9}\]
\[ = \frac{1}{3}\int\frac{dt}{4 t^2 - 9}\]


\[ = \frac{1}{3}\int\frac{dt}{\left( 2t \right)^2 - 3^2}\]
\[ = \frac{1}{3} \times \frac{1}{2 \times 3} \text{ log }\left| \frac{2t - 3}{2t + 3} \right| \times \frac{1}{2} + C\]
\[ = \frac{1}{36} \text{ log }\left| \frac{2t - 3}{2t + 3} \right| + C\]
\[ = \frac{1}{36} \text{log }\left| \frac{2 e^{3x} - 3}{2 e^{3x} + 3} \right| + C\]

Concept: Indefinite Integral Problems
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 12 Maths
Chapter 19 Indefinite Integrals
Exercise 19.16 | Q 5 | Page 90

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×