दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी व 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल तर मोठ्या त्रिकोणाची संगत बाजू काढा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements
Sum

दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी व 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल तर मोठ्या त्रिकोणाची संगत बाजू काढा.

Advertisements

Solution

समजा दोन समरूप त्रिकोणांची क्षेत्रफळे A1 आणि A2 आहेत.

A= 225 चौसेमी, A2 = 81 चौसेमी

समजा, मोठ्या व लहान त्रिकोणांच्या संगत बाजू अनुक्रमे s1 व s2 आहेत.

s= 12 सेमी

`"A"_1/"A"_2 = ("s"_1^2)/("s"_2^2)` .......[समरूप त्रिकोणांच्या क्षेत्रफळांचे गुणोत्तर]

∴ `225/81 = ("s"_1^2)/12^2`

∴ `"s"_1^2 = (225 xx 12^2)/81`

∴ s= `(15 xx 12)/9`  ......[दोन्ही बाजूंचे वर्गमूळ घेऊन]

∴ s= 20 सेमी

∴ मोठ्या त्रिकोणाची संगत बाजू २० सेमी आहे.

Concept: समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय
  Is there an error in this question or solution?
Chapter 1: समरूपता - सरावसंच 1.4 [Page 25]

RELATED QUESTIONS

ΔABC ∼ ΔPQR आणि AB : PQ = 2 : 3, तर खालील चौकटी पूर्ण करा.

`("A"(Δ"ABC"))/("A"(Δ"PQR")) = ("AB"^2)/square" = 2^2/3^2 = square/square`


Δ LMN ~ Δ PQR, 9 × A (ΔPQR ) = 16 × A (ΔLMN) जर QR = 20 तर MN काढा.


आकृतीमध्ये PM = 10 सेमी, A(∆PQS) = 100 चौसेमी, A(∆QRS) = 110 चौसेमी, तर NR ची लांबी काढा.

∆PQS व ∆QRS यांचा रेख QS हा सामाईक पाया आहे.

सामाईक पाया असणाऱ्या त्रिकोणांची क्षेत्रफळे ही संगत `square` प्रमाणात असतात.

`("A"(Delta"PQS"))/("A"(Delta"QRS")) = square/"NR",`

`100/110 = square/"NR",`

NR = `square` सेमी

 


दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी, 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल, तर मोठ्या त्रिकोणाची संगत बाजू काढा. 


∆ABC मध्ये, AP लंब BC व BQ लंब AC, B-P-C, A-Q-C, तर ∆CPA ~ ∆CQB दाखवा. जर AP = 7, BQ = 8, BC = 12 असल्यास AC ची किंमत काढा. 

∆CPA व ∆CQB मध्ये,

∠CPA ≅ `square` ...........[प्रत्येकी 90°]

∠ACP ≅ `square` ...........[सामाईक कोन]

∆CPA ~ ∆CQB ............[`square` समरूपता कसोटी]

`"AP"/"BQ" = square/"BC"` ............…[समरूप त्रिकोणांच्या संगत बाजू प्रमाणात]

`7/8 = square/12`

AC × `square` = 7 × 12

AC = 10.5

 


समभुज त्रिकोण PQR ची बाजू 8 सेमी आहे, तर त्या त्रिकोणाच्या बाजूपेक्षा निम्म्या बाजू असणाऱ्या समभुज त्रिकोणाचे क्षेत्रफळ काढा. 


दोन समरूप त्रिकोणांची क्षेत्रफळे समान असल्यास ते त्रिकोण एकरूप असतात. सिद्ध करा.


ΔABC ∼ ΔPQR, ΔABC मध्ये AB = 5.4 सेमी, BC = 4.2 सेमी, AC = 6.0 सेमी, AB : PQ = 3 : 2, तर ΔABC आणि ΔPQR ची रचना करा.


ΔABC मध्ये रेख DE || बाजू BC. जर 2A(ΔADE) = A(⬜ DBCE), तर AB : AD आणि BC = `sqrt3` DE दाखवा.


जर ∆ABC ~ ∆PQR आणि AB : PQ = 2 : 3, तर `("A" (∆"ABC"))/("A"(∆"PQR"))` ची किंमत काढा.


Share
Notifications



      Forgot password?
Use app×