###### Advertisements

###### Advertisements

**Divide:** 8x − 10y + 6c by 2

###### Advertisements

#### Solution

`(8"x"-10"y"+6"c")/2`

`=(8"x")/2-(10"y")/2+(6"c")/2`

= 4x − 5y + 3c

#### APPEARS IN

#### RELATED QUESTIONS

**Divide the given polynomial by the given monomial.**

(p^{3}q^{6} − p^{6}q^{3}) ÷ p^{3}q^{3}

Write the degree of each of the following polynomials.

2*x* + *x*^{2} − 8

Write the degree of each of the following polynomials.

*x*

^{3}+ 12

*x*

^{2}

*y*

^{2}− 10

*y*

^{2}+ 20

Simplify:\[\frac{16 m^3 y^2}{4 m^2 y}\]

Divide −4*a*^{3} + 4*a*^{2} + *a* by 2*a**.*

Divide\[- x^6 + 2 x^4 + 4 x^3 + 2 x^2\ \text{by} \sqrt{2} x^2\]

Divide\[\sqrt{3} a^4 + 2\sqrt{3} a^3 + 3 a^2 - 6a\ \text{by}\ 3a\]

Divide 3*x*^{3}*y*^{2} + 2*x*^{2}*y* + 15*xy* by 3*xy**.*

Divide 3*y*^{4} − 3y^{3} − 4*y*^{2} − 4*y* by *y*^{2} − 2*y**.*

Divide *m*^{3} − 14*m*^{2} + 37*m* − 26 by *m*^{2} − 12*m* +13.

**Divide:** 15a^{3}b^{4} − 10a^{4}b^{3} − 25a^{3}b^{6} by −5a^{3}b^{2}

**Divide:** −14x^{6}y^{3 }− 21x^{4}y^{5} + 7x^{5}y^{4} by 7x^{2}y^{2}

8x^{3}y ÷ 4x^{2} = 2xy

7ab^{3} ÷ 14ab = 2b^{2}

Divide 27y^{3} by 3y

Simplify `(14"p"^5"q"^3)/(2"p"^2"q") - (12"p"^3"q"^4)/(3"q"^2)`

Divide: (32y^{2} – 8yz) by 2y

Divide: 81(p^{4}q^{2}r^{3} + 2p^{3}q^{3}r^{2} – 5p^{2}q^{2}r^{2}) by (3pqr)^{2}

Statement A: If 24p^{2}q is divided by 3pq, then the quotient is 8p.

Statement B: Simplification of `((5x + 5))/5` is 5x

The denominator of a fraction exceeds Its numerator by 8. If the numerator is increased by 17 and the denominator is decreased by 1, we get `3/2`. Find the original fraction.