###### Advertisements

###### Advertisements

**Divide:** −14x^{6}y^{3 }− 21x^{4}y^{5} + 7x^{5}y^{4} by 7x^{2}y^{2}

###### Advertisements

#### Solution

`(-14"x"^6"y"^3-21"x"^4"y"^5 +7"x"^5"y"^4) /(7"x"^2"y"^2)`

`=(-14"x"^6"y"^3)/(7"x"^2"y"^2)-(21"x"^4)/(7"x"^2"y"^2)+(7"x"^5"y"^4)/(7"x"^2"y"^2)`

= −2x^{6−2}y^{3−2} −3x^{4−2}y^{5−2} + x^{5−2}y^{4−2}

= −2x^{4}y − 3x^{2}y^{3} + x^{3}y^{2}

#### APPEARS IN

#### RELATED QUESTIONS

Which of the following expressions are not polynomials?

*x*

^{−2}+ 2

*x*

^{−1}+ 4

*x*+5

Divide −72*a*^{4}*b*^{5}*c*^{8} by −9*a*^{2}*b*^{2}*c*^{3}.

Divide 5*z*^{3} − 6*z*^{2} + 7*z* by 2*z*.

Divide 9*x*^{2}*y* − 6*xy* + 12*xy*^{2} by −\[\frac{3}{2}\]

Divide 4*y*^{2} + 3*y* +\[\frac{1}{2}\] by 2*y* + 1.

Divide 3*x*^{3} + 4*x*^{2} + 5*x* + 18 by *x* + 2.

Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.

Dividend | Divisor |

34x − 22x^{3} − 12x^{4} − 10x^{2} − 75 |
3x + 7 |

Find the value of *a*, if *x* + 2 is a factor of 4*x*^{4} + 2*x*^{3} − 3*x*^{2} + 8*x* + 5*a*.

Divide the first polynomial by the second in each of the following. Also, write the quotient and remainder:

10*x*^{2} − 7*x* + 8, 5*x* − 3

Divide:

(a^{2} + 2ab + b^{2}) − (a^{2} + 2ac + c^{2}) by 2a + b + c

**Divide:** 8x − 10y + 6c by 2

**Divide:** 15a^{3}b^{4} − 10a^{4}b^{3} − 25a^{3}b^{6} by −5a^{3}b^{2}

8x^{3}y ÷ 4x^{2} = 2xy

7ab^{3} ÷ 14ab = 2b^{2}

Divide 27y^{3} by 3y

Simplify `(14"p"^5"q"^3)/(2"p"^2"q") - (12"p"^3"q"^4)/(3"q"^2)`

Divide: (32y^{2} – 8yz) by 2y

Divide: 81(p^{4}q^{2}r^{3} + 2p^{3}q^{3}r^{2} – 5p^{2}q^{2}r^{2}) by (3pqr)^{2}

Statement A: If 24p^{2}q is divided by 3pq, then the quotient is 8p.

Statement B: Simplification of `((5x + 5))/5` is 5x

The denominator of a fraction exceeds Its numerator by 8. If the numerator is increased by 17 and the denominator is decreased by 1, we get `3/2`. Find the original fraction.