Advertisement Remove all ads

Discuss the Continuity of the Function F at X = 0 - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Discuss the continuity of the function f at x = 0

If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0

         = 1,   for x = 0

Advertisement Remove all ads

Solution

Given f(0) = 1

Consider,

`lim_(x->0)` f (x) = `lim_(x->0) [(2^(3x) - 1)/tanx]`

  = `lim_(x->0) [((2^(3x) - 1)/x)/((tanx)/x]], x ≠ 0`

= `lim_(x->0) [(2^(3x) - 1)/(3x).3]/(lim_(x->0)(tanx)/x) = 3 log 2`

= log 8

`(lim_(x->0) (a^x - 1)/x = log a and lim_(x->0) (tan x)/x = 1)`

`as x -> 0, 3x ->0`

Since `(lim_(x->0)` f(x) ≠ f(0)

f(x) is discontinuous at x = 0

Concept: Continuous Function of Point
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×