###### Advertisements

###### Advertisements

Discuss the continuity of the function

`f(x)=(1-sinx)/(pi/2-x)^2, `

** = 3, for x=π/2**

###### Advertisements

#### Solution

`f(pi/2)=3 ......(given)`

`lim_(x->pi/2)f(x)=lim_(x->pi/2)(1-sinx)/(pi/2-x)`

`put pi/2-x=h then x=pi/2-h`

`As x->pi/2,h->0`

`lim_(h->0)(1-sin(pi/2-h))/h^2=lim_(h->0)(1-cosh)/h^2`

`=lim_(h->0)(1-cosh)/h^2xx(1+cosh)/(1+cosh)=lim_(h->0)(1-cos^2h)/(h^2(1+cosh))`

`=lim_(h->0)(sin^2h)/(h^2(1+cosh))=lim_(h->0)((sinh)/h)^2(1/(1+cosh))=1xx1/(1+1)`

`=lim_(x->pi/2)f(x)!=f(pi/2)`

f(x) is discontinuous at `x =pi/2`

#### APPEARS IN

#### RELATED QUESTIONS

Examine the continuity of the following function at given point:

`f(x)=(logx-log8)/(x-8) , `

` =8, `

Given f (x) = 2x, x < 0

= 0, x ≥ 0

then f (x) is _______ .

If f(x) = `|x|/x`, for x ≠ 0

= 1, for x = 0, then the function is ______.

The function f(x) = `(x + 1)/(9x + x^3)` is.

The points of discontinuity of the function

f(x) = `1/(x - 1)` if 0 ≤ x ≤ 2

= `(x + 5)/(x + 3) if 2 < x ≤ 4` in its domain are.