Sum
Discuss the Continuity of the F(X) at the Indicated Points : F(X) = | X − 1 | + | X + 1 | at X = −1, 1.
Advertisement Remove all ads
Solution
Given : \[f\left( x \right) = \left| x - 1 \right| + \left| x + 1 \right|\]
We have
(LHL at x = −1) = \[\lim_{x \to - 1^-} f\left( x \right) = \lim_{h \to 0} f\left( - 1 - h \right)\]
\[= \lim_{h \to 0} \left[ \left| - 1 - h - 1 \right| + \left| - 1 - h + 1 \right| \right] = 2 + 0 = 2\]
(RHL at x = −1) =
\[\lim_{x \to - 1^+} f\left( x \right) = \lim_{h \to 0} f\left( - 1 + h \right)\]
\[= \lim_{h \to 0} \left[ \left| - 1 + h - 1 \right| + \left| - 1 + h + 1 \right| \right] = 2 + 0 = 2\]
Also,
\[f\left( - 1 \right) = \left| - 1 - 1 \right| + \left| - 1 + 1 \right| = \left| - 2 \right| = 2\]
Now,
(LHL at x = 1) = \[\lim_{x \to 1^-} f\left( x \right) = \lim_{h \to 0} f\left( 1 - h \right) = \lim_{h \to 0} \left( \left| 1 - h - 1 \right| + \left| 1 - h + 1 \right| \right) = 0 + 2 = 2\]
(RHL at x =1) = \[\lim_{x \to 1^+} f\left( x \right) = \lim_{h \to 0} f\left( 1 + h \right) = \lim_{h \to 0} \left( \left| 1 + h - 1 \right| + \left| 1 + h + 1 \right| \right) = 0 + 2 = 2\]
Also,
\[f\left( 1 \right) = \left| 1 + 1 \right| + \left| 1 - 1 \right| = 2\]
∴ \[\lim_{x \to - 1^-} f\left( x \right) = \lim_{x \to - 1^+} f\left( x \right) = f\left( - 1 \right) and \lim_{x \to 1^-} f\left( x \right) = \lim_{x \to 1^+} f\left( x \right) = f\left( 1 \right)\]
Hence,
\[f\left( x \right)\] is continuous at \[x = - 1, 1\] .
Concept: Concept of Continuity
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads