Discuss the composition of two S.H.M.s along the same path having same period. Find the resultant amplitude and intial phase.
Solution
Analytical treatment:
i. Let the two linear S.H.M’s be given by equations,
x1 = A1 sin (ωt + α1) …(1)
x2 = A2 sin (ωt + α2) …(2)
where A1, A2 are amplitudes; α1, α2 are initial phase angles and x1, x2 are the displacement of two S.H.M’s in time ‘t’. ω is same for both S.H.M’s.
ii. The resultant displacement of the two S.H.M’s is given by,
x = x1 + x2 ....(3)
iii. Using equations (1) and (2) , equation (3) can be written as,
x = A1 sin (ωt + α1) + A2 sin (ωt + α2)
= A1 [sin ωt cos α1 + cos ωt sin α1] + A2 [sin ωt cos α2 + cos ωt sin α2]
= A1 sin ωt cos α1 + A1 cos ωt sin α1 + A2 sin ωt cos α2 + A2 cos ωt sin α2
= [A1 sin ωt cos α1 + A2 sin ωt cos α2] + [A1 cos ωt sin α1 + A2 cos ωt sinα2]
∴ x = sin ωt [A1 cos α1 + A2 cos α2] + cos ωt [A1 sin α1 + A2 sin α2] …(4)
iv. Let A1 cos α1+ A2 cos α2 = R cos δ …(5)
and A1 sin α1 + A2 sin α2 = R sin δ …(6)
v. Using equations (5) and (6), equation (4) can be written as,
x = sin ωt. R cos δ + cos ωt.R sin δ
= R [sin ωt cos δ + cos ωt sin δ]
∴ x = R sin (ωt + δ) ....(7)
Equation (7) represents linear S.H.M. of amplitude R and initial phase angle δ with same period.
Resultant amplitude (R):
Squaring and adding equations (v) and (vi) we get,
(A1 cos α1 + A2 cos α2)2 + (A1 sin α1 + A2 sin α2)2 = R2cos2δ + R2sin2δ
∴ A12cos2 α1+ A22 cos2 α2 + 2A1 A2 cosα1 cosα2 +A12 sin2 α1 + A22sin2 α2 + 2A1A2 sinα1 sinα2 = R2 (cos2 δ + sin2 δ)
∴ A12 (cos2 α1 + sin2 α1) + A22 (cos2 α2 + sin2 α2) + 2A1 A2 (cosα1 cosα2 + sinα1 sinα2) = R2
∴ A12 + A22 + 2A1 A2 cos (α1 - α2) = R2
∴ `"R"=+-sqrt(A_1^2+A_2^2+2A_1A_2cos(alpha_1-alpha_2))` ...........(8)
Equation (8) represents resultant amplitude of two S.H.M’s.
Resultant (intial) phase (δ):
Dividing equation (6) by (5), we get
`(A_1sinalpha_1 +A_2sinalpha_2)/(A_1cosalpha_1+A_2cosalpha_2)=(Rsindelta)/(Rcosdelta)`
`therefore(A_1sinalpha_1 +A_2sinalpha_2)/(A_1cosalpha_1+A_2cosalpha_2)=tandelta`
`thereforedelta=tan^(-1)[(A_1sinalpha_1 +A_2sinalpha_2)/(A_1cosalpha_1+A_2cosalpha_2)]` ..................(9)
Equation (9) represents resultant or intial phase of two S.H.M’s.