CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Show that the Line Through the Points (1, −1, 2) and (3, 4, −2) is Perpendicular to the Line Through the Points (0, 3, 2) and (3, 5, 6). - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Show that the line through the points (1, −1, 2) and (3, 4, −2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).

Solution

\[\text { We know that two lines with direction ratios } a_1 , b_1 , c_1 \text { and } a_2 , b_2 , c_2 \text { are perpendicular if } a_1 a_2 + b_1 b_2 + c_1 c_2 = 0 . \]

\[\text { The direction ratios of the line passing through the points }\left( 1, - 1, 2 \right) \text{ and } \left( 3, 4, - 2 \right) \text{ are } \left( 3 - 1 \right), \left[ 4 - \left( - 1 \right) \right], \left( - 2 - 2 \right), \text { i . e  } . 2, 5, - 4 . \]

\[ \Rightarrow a_1 = 2, b_1 = 5, c_1 = - 4\]

\[\text { Similarly, the direction ratios of the line passing through the points } \left( 0, 3, 2 \right) \text { and } \left( 3, 5, 6 \right) \text { are }\left( 3 - 0 \right), \left( 5 - 3 \right), \left( 6 - 2 \right), \text{ i . e} . 3, 2, 4 . \]

\[ \Rightarrow a_2 = 3, b_2 = 2, c_2 = 4\]

\[ \therefore a_1 a_2 + b_1 b_2 + c_1 c_2 = 2 \times 3 + 5 \times 2 + \left( - 4 \right) \times 4 = 6 + 10 - 16 = 0\]

Thus, the line through the points (1, -1, 2) and (3, 4, -2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6)

  Is there an error in this question or solution?

APPEARS IN

Solution Show that the Line Through the Points (1, −1, 2) and (3, 4, −2) is Perpendicular to the Line Through the Points (0, 3, 2) and (3, 5, 6). Concept: Direction Cosines and Direction Ratios of a Line.
S
View in app×