CBSE (Commerce) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Show that the Line Joining the Origin to the Point (2, 1, 1) is Perpendicular to the Line Determined by the Points (3, 5, −1) and (4, 3, −1). - CBSE (Commerce) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).

Solution

\[\text{ We know that two lines with direction ratios }  a_1 , b_1 , c_1 \text { and } a_2 , b_2 , c_2 \text { are perpendicular if } a_1 a_2 + b_1 b_2 + c_1 c_2 = 0 . \]

 

\[\text { The direction ratios of the line joining the origin } \left( 0, 0, 0 \right) \text { to the point } \left( 2, 1, 1 \right) \text { are } \left( 2 - 0 \right), \left( 1 - 0 \right), \left( 1 - 0 \right) \text{ or } 2, 1, 1 . \]

\[ \Rightarrow a_1 = 2, b_1 = 1, c_1 = 1\]

\[\text { Similarly, the direction ratios of the line joining the points } \left( 3, 5, - 1 \right) \text { and }  \left( 4, 3, - 1 \right) \text { are } \left( 4 - 3 \right), \left( 3 - 5 \right), \left[ - 1 - \left( - 1 \right) \right] \text { or } 1, - 2, 0 . \]

\[ \Rightarrow a_2 = 1, b_2 = - 2, c_2 = 0\]

\[ \therefore a_1 a_2 + b_1 b_2 + c_1 c_2 = 2 - 2 + 0 = 0\]

Therefore, the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, -1) and (4, 3, -1).

  Is there an error in this question or solution?

APPEARS IN

Solution Show that the Line Joining the Origin to the Point (2, 1, 1) is Perpendicular to the Line Determined by the Points (3, 5, −1) and (4, 3, −1). Concept: Direction Cosines and Direction Ratios of a Line.
S
View in app×