CBSE (Commerce) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for If the X-coordinate of a Point P on the Join of Q (2, 2, 1) and R (5, 1, −2) is 4, Then Its Z-coordinate is (A) 2 (B) 1 (C) −1 (D) −2 - CBSE (Commerce) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is

  • 2

  • 1

  • -1

  • -2

Solution

\[\left( c \right) - 1\]

\[\text { Suppose the point P divides the line joining the point Q } \left( 2, 2, 1 \right) \text{ and } R \left( 5, 1, - 2 \right) \text{ in the ratio k: 1 } . \]

\[ \text{ Using the section formula, the coordinates of the point of intersection are given by } \]

\[\left( \frac{k\left( 5 \right) + 2}{k + 1}, \frac{k\left( 1 \right) + 2}{k + 1}, \frac{k\left( - 2 \right) + 1}{k + 1} \right)\]

\[\text { It is given that the X - coordinate of P is 4 } . \]

\[ \Rightarrow \frac{k\left( 5 \right) + 2}{k + 1} = 4\]

\[ \Rightarrow 5k + 2 = 4\left( k + 1 \right)\]

\[ \Rightarrow k = 2\]

\[\text{ Now } , \]

\[Z - \text{ coordinate of P } = \frac{k\left( - 2 \right) + 1}{k + 1}\]

\[ = \frac{2\left( - 2 \right) + 1}{2 + 1} \left    [ \text{ Substituting k } = 2 \right]\]

\[ = - 1\]

  Is there an error in this question or solution?
Solution If the X-coordinate of a Point P on the Join of Q (2, 2, 1) and R (5, 1, −2) is 4, Then Its Z-coordinate is (A) 2 (B) 1 (C) −1 (D) −2 Concept: Direction Cosines and Direction Ratios of a Line.
S
View in app×