CBSE (Commerce) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Find the Direction Cosines of the Sides of the Triangle Whose Vertices Are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2). - CBSE (Commerce) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).

Solution

\[\text {The vertices of ∆ ABC are }A \left( 3, 5, - 4 \right), B \left( - 1, 1, 2 \right)\text{ and } C \left( - 5, - 5, - 2 \right) .\]

\[\text{The direction ratios of AB are} \left( - 1 - 3 \right), \left( 1 - 5 \right), \left[ 2 - \left( - 4 \right) \right], \text{i . e} . - 4, - 4, 6 . \]

\[\text{Therefore, the direction cosines of AB are}\]

\[\frac{- 4}{\sqrt{\left( - 4 \right)^2 + \left( - 4 \right)^2 + \left( 6 \right)^2}}, \frac{- 4}{\sqrt{\left( - 4 \right)^2 + \left( - 4 \right)^2 + \left( 6 \right)^2}}, \frac{6}{\sqrt{\left( - 4 \right)^2 + \left( - 4 \right)^2 + \left( 6 \right)^2}}\]

\[ = \frac{- 4}{2\sqrt{17}}, \frac{- 4}{2\sqrt{17}}, \frac{6}{2\sqrt{17}} \]

\[ = \frac{2}{\sqrt{17}}, \frac{2}{\sqrt{17}}, \frac{- 3}{\sqrt{17}}\]

\[\text{The direction ratios of BC are} \left[ - 5 - \left( - 1 \right) \right], \left( - 5 - 1 \right), \left( - 2 - 2 \right), \text{i . e} . - 4, - 6, - 4 . \]

\[\text{Therefore, the direction cosines of BC are}\]

\[\frac{- 4}{\sqrt{\left( - 4 \right)^2 + \left( - 6 \right)^2 + \left( - 4 \right)^2}}, \frac{- 6}{\sqrt{\left( - 4 \right)^2 + \left( - 6 \right)^2 + \left( - 4 \right)^2}}, \frac{- 4}{\sqrt{\left( - 4 \right)^2 + \left( - 6 \right)^2 + \left( - 4 \right)^2}}\]

\[ = \frac{- 4}{2\sqrt{17}}, \frac{- 6}{2\sqrt{17}}, \frac{- 4}{2\sqrt{17}} \]

\[ = \frac{2}{\sqrt{17}}, \frac{3}{\sqrt{7}}, \frac{2}{\sqrt{17}}\]

\[\text{The direction ratios of CA are} \left[ 3 - \left( - 5 \right) \right], \left[ 5 - \left( - 5 \right) \right], \left[ - 4 - \left( - 2 \right) \right],\text{ i . e} . 8, 10, - 2 . \]

\[\text{Therefore, the direction cosines of CA are}\]

\[\frac{8}{\sqrt{\left( 8 \right)^2 + \left( 10 \right)^2 + \left( - 2 \right)^2}}, \frac{10}{\sqrt{\left( 8 \right)^2 + \left( 10 \right)^2 + \left( - 2 \right)^2}}, \frac{- 2}{\sqrt{\left( 8 \right)^2 + \left( 10 \right)^2 + \left( - 2 \right)^2}}\]

\[ = \frac{8}{2\sqrt{42}}, \frac{10}{2\sqrt{42}}, \frac{- 2}{2\sqrt{42}} \]

\[ = \frac{4}{\sqrt{42}}, \frac{5}{\sqrt{42}}, \frac{- 1}{\sqrt{42}}\]

 

  Is there an error in this question or solution?
Solution Find the Direction Cosines of the Sides of the Triangle Whose Vertices Are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2). Concept: Direction Cosines and Direction Ratios of a Line.
S
View in app×