CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Find the Angle Between the Vectors Whose Direction Cosines Are Proportional to 2, 3, −6 and 3, −4, 5. - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.

Solution

\[\text{ Let } \vec{a} \text{ be a vector with direction ratios } 2, 3, - 6 . \]

\[ \Rightarrow \vec{a} = 2  \hat{i} + 3 \hat{j} - 6 \hat{k} .\]

\[\ \text { Let } \vec{b} \text { be a vector with direction ratios }  3, - 4, 5 . \]

\[ \Rightarrow \vec{b} = 3 \hat{i} - 4 \hat{j} + 5 \hat{k} \]

\[\text{ Let } \theta \text{  be the angle between the given vectors }  . \]

\[Now, \]

\[\cos \theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} \]

\[ = \frac{\left( 2 \hat{i} + 3 \hat{j} - 6 \hat{k} \right) . \left( 3 \hat{i} - 4 \hat{j} + 5 \hat{k} \right)}{\left| 2 \hat{i} + 3 \hat{j} - 6 \hat{k} \right|\left| 3 \hat{i} - 4 \hat{j} + 5 \hat{k} \right|}\]

\[ = \frac{6 - 12 - 30}{\sqrt{4 + 9 + 36} \sqrt{9 + 16 + 25}} \]

\[ = \frac{- 36}{\sqrt{49} \sqrt{50}} \]

\[ = \frac{- 36}{35\sqrt{2}}\]

\[\text{ Rationalising the result, we get }\]

\[\cos \theta = - \frac{18\sqrt{2}}{35} \]

\[ \therefore \theta = \cos^{- 1} \left( - \frac{18\sqrt{2}}{35} \right)\]

\[\ \text { Thus, the angle between the given vectors measures }\cos^{- 1} \left( - \frac{18\sqrt{2}}{35} \right) . \]

 

  Is there an error in this question or solution?
Solution Find the Angle Between the Vectors Whose Direction Cosines Are Proportional to 2, 3, −6 and 3, −4, 5. Concept: Direction Cosines and Direction Ratios of a Line.
S
View in app×