दिलेल्या आकृतीत, PQ ⊥ BC, AD ⊥ BC तर खालील गुणोत्तरे लिहा. i) A(ΔPQB)A(ΔPBC) ii) A(ΔPBC)A(ΔABC) iii) A(ΔABC)A(ΔADC) iv) A(ΔADC)A(ΔPQC) - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements
Sum

दिलेल्या आकृतीत, PQ ⊥ BC, AD ⊥ BC तर खालील गुणोत्तरे लिहा.

i) `"A(ΔPQB)"/"A(ΔPBC)"`

ii) `"A(ΔPBC)"/"A(ΔABC)"`

iii) `"A(ΔABC)"/"A(ΔADC)"`

iv) `"A(ΔADC)"/"A(ΔPQC)"`

Advertisements

Solution

i. ΔPQB आणि ΔPBC ची PQ ही सामाईक उंची आहे.

`"A(ΔPQB)"/"A(ΔPBC)" = "BQ"/"BC"`  ........[समान उंचीचे त्रिकोण]

ii. ΔPBC आणि ΔABC चा BC हा सामाईक पाया आहे.

`"A(ΔPBC)"/"A(ΔABC)" = "PQ"/"AD"`  .......[समान पाया असलेले त्रिकोण]

iii. ΔABC आणि ΔADC चा AD हा सामाईक पाया आहे.

`"A(ΔABC)"/"A(ΔADC)" = "BC"/"DC"`  .......[समान उंचीचे त्रिकोण]

iv. `"A(ΔADC)"/"A(ΔPQC)" = ("DC" xx "AD")/("QC" xx "PQ")`  .........[दोन त्रिकोणांच्या क्षेत्रफळांचे गुणोत्तर हे त्यांच्या पाया व संगत उंची यांच्या गुणाकारांच्या गुणोत्तराएवढे असते.]

Concept: दोन त्रिकोणांच्या क्षेत्रफळांच्या गुणोत्तराचे गुणधर्म
  Is there an error in this question or solution?
Chapter 1: समरूपता - सरावसंच 1.1 [Page 6]

RELATED QUESTIONS

दिलेल्या आकृती मध्ये BC ⊥ AB, AD ⊥ AB, BC = 4, AD = 8 तर `("A(ΔABC)")/("A(ΔADB)")` काढा.


दिलेल्या आकृती मध्ये रेख PS ⊥ रेख RQ रेख QT ⊥ रेख PR. जर RQ = 6, PS = 6, PR = 12 तर QT काढा.

 


ΔABC मध्ये B - D – C आणि BD = 7, BC = 20 तर खालील गुणोत्तरे काढा.

  1. `("A"(Δ"ABD"))/("A"(Δ"ADC"))`
  2. `("A"(Δ"ABD"))/("A"(Δ"ABC"))`
  3. `("A"(Δ"ADC"))/("A"(Δ"ABC"))`


∆PQR ~ ∆SUV, तर त्या त्रिकोणाच्या एकरूप कोनांच्या जोड्या लिहा.


आकृतीमध्ये, AB लंब BC आणि DC लंब BC, AB = 6, DC = 4, तर `("A"(Delta"ABC"))/("A"(Delta"BCD"))` = ?


आकृतीमध्ये, दिलेल्या माहितीवरून ∠ABC = 90°, ∠DCB = 90°, AB = 6, DC = 8, तर `("A"(Delta"ABC"))/("A"(Delta"BCD"))` किती? 


त्रिकोणाच्या एका बाजूला समांतर असणारी रेषा त्याच्या उरलेल्या बाजूंना भिन्न बिंदूत छेदत असेल, तर ती रेषा त्या बाजूंना एकाच प्रमाणात विभागते. सिद्धता पूर्ण करा.

पक्ष: ∆ABC मध्ये रेषा l || बाजू BC आणि रेषा l ही बाजू AB ला P मध्ये व बाजू AC ला Q मध्ये छेदते.

साध्य: `"AP"/"PB" = "AQ"/"QC"`

रचना: रेख CP व रेख BQ काढा.

सिद्धता:

∆APQ व ∆PQB हे समान उंचीचे त्रिकोण आहेत.

`("A"(Delta"APQ"))/("A"(Delta"PQB")` = `square/"PB"` ..........[क्षेत्रफळे पायांच्या प्रमाणात] (i)

`("A"(Delta"APQ"))/("A"(Delta"PQC")` = `square/"QC"` ..........[क्षेत्रफळे पायांच्या प्रमाणात] (ii)

∆PQC व ∆PQB यांचा रेख `square` हा समान पाया आहे.

रेख PQ || रेख BC म्हणून: ∆∆APQ व ∆PQB यांची उंची समान आहे.

A(∆PQC) = A(∆ `square`) ........….(iii)

`("A"(Delta"APQ"))/("A"(Delta"PQB")` = `("A"(∆ square))/("A"(∆ square))` ..............[(i), (ii) व (iii]

`"AP"/"PB" = "AQ"/"QC"` ......….[(i) व (ii) वरून]


∆ABC मध्ये, B-D-C आणि BD = 7, BC = 20, तर खालील गुणोत्तर काढा.

`("A"(Delta"ABD"))/("A"(Delta"ADC"))`

 


∆ABC मध्ये, B-D-C आणि BD = 7, BC = 20, तर खालील गुणोत्तर काढा.

`("A"(Delta"ABD"))/("A"(Delta"ABC"))`

 


वास्तू विशारदाकडे इमारतीची प्रतिकृती आहे. प्रत्यक्ष इमारतीची लांबी 1 मीटर असल्यास प्रतिकृतीची लांबी 0.75 सेमी असेल, तर 22.5 मीटर लांबी आणि 10 मीटर उंची असलेल्या इमारतीच्या प्रतिकृतीची लांबी व उंची काढा.


Share
Notifications



      Forgot password?
Use app×