Sum
Differentiate the following w.r.t.x. :
y = `x^4 + x sqrt(x) cos x - x^2"e"^x`
Advertisement Remove all ads
Solution
y = `x^4 + x sqrt(x) cos x - x^2"e"^x`
y = `x^4 + x^(3/2) cos x - x^2"e"^x`
Differentiating w.r.t. x, we get
`("d"y)/("d"x) = "d"/("d"x) (x^4 + x^(3/2) cos x - x^2 "e"^x)`
`("d"y)/("d"x) = "d"/("d"x) (x^4) + "d"/("d"x) (x^(3/2) cos x) - "d"/("d"x) (x^2"e"^x)`
= `4x^3 + x^(3/2) "d"/("d"x) cos x + cos x "d"/("d"x) (x^(3/2)) - [x^2 ("d"/("d"x) "e"^x) + "e"^x ("d"/("d"x) x^2)]`
= `4x^3 + x^(3/2) (- sin x) + cos x (3/2x^(1/2)) - [x^2 "e"^x + "e"^x (2x)]`
= `4x^3 - x^(3/2) sin x + 3/2 sqrt(x) cos x - x"e"^x (x + 2)`
Concept: Derivatives of Trigonometric Functions
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads