Sum
Differentiate the following w.r.t.x: `log(sqrt((1 - sinx)/(1 + sinx)))`
Advertisement Remove all ads
Solution
Let y = `log(sqrt((1 - sinx)/(1 + sinx)))`
= `log(sqrt((1 - sinx)/(1 + sinx) xx (1 - sinx)/(1 - sinx)))`
= `log(sqrt((1 - sinx)^2/(1 - sin^2x)))`
= `log(sqrt((1 - sinx)^2/(cos^2x)))`
= `log((1 - sinx)/(cosx))`
= `log(1/cosx - sinx/cosx)`
= log(sec x – tan x)
Differentiating w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[log(secx - tanx)]`
= `(1)/(secx - tanx)."d"/"dx"(secx - tanx)`
= `(1)/(secx - tanx) xx (secx tanx - sec^2x)`
= `(-secx(secx - tanx))/(secx - tanx)`
= –sec x.
Concept: Differentiation
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads