###### Advertisements

###### Advertisements

Differentiate the following function with respect to *x*: `(log x)^x+x^(logx)`

###### Advertisements

#### Solution

`Let y=(logx)^x+x^(logx).............(1)`

`Now `

`y=y_1+y_2 ..........................(2)`

Differentiating (2) with respect *x*, we get

`dy/dx=dy_1/dx+dy_2/dx.........(3)`

Now take log of *y*_{1} = (log *x*)^{x}

`log y_1 = x log (log x)`

Differentiating with respect to *x*, we get

`1/y_2 dy_2/dx=(2logx) xx 1/x`

`dy_2/dx=y_2((2logx)/x)=x^(logx)((2logx)/x)................(5)`

Adding equation (4) and (5), we get:

`dy/dx=(logx)^x(1/logx+log(logx))+x^(logx)((2logx)/x)`

#### APPEARS IN

#### RELATED QUESTIONS

if x^{x}+x^{y}+y^{x}=a^{b}, then find `dy/dx`.

**Differentiate the function with respect to x. **

cos x . cos 2x . cos 3x

**Differentiate the function with respect to x.**

`(x + 1/x)^x + x^((1+1/x))`

**Differentiate the function with respect to x.**

`(x cos x)^x + (x sin x)^(1/x)`

**Find `dy/dx`for the function given in the question:**

x^{y} + y^{x} = 1

**Find `dy/dx` for the function given in the question:**

y^{x} = x^{y}

**Find `dy/dx` for the function given in the question:**

(cos x)^{y} = (cos y)^{x}

**Find `dy/dx` for the function given in the question:**

`xy = e^((x – y))`

If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.

**Differentiate w.r.t. x the function:**

x^{x} + x^{a} + a^{x} + a^{a}, for some fixed a > 0 and x > 0

If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`

If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`

if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`

Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`

**Evaluate**

`int 1/(16 - 9x^2) dx`

Find `(d^2y)/(dx^2)` , if y = log x

Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`

x^{y} = e^{x-y}, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`

If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`

Solve the following differential equation: (3xy + y^{2}) dx + (x^{2} + xy) dy = 0

If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`

If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.

If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`

If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.

`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`

If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.

If e^{y} = y^{x}, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.

If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.

If x = e^{sin3t}, y = e^{cos3t}, then show that `dy/dx = -(ylogx)/(xlogy)`.

If x = a cos^{3}t, y = a sin^{3}t, show that `"dy"/"dx" = -(y/x)^3`.

If x = 2cos^{4}(t + 3), y = 3sin^{4(}t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.

If x = sin^{–1}(e^{t}), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0

If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dy"/"dx" = -(b^2y)/(a^2x)`.

Differentiate 3^{x }w.r.t. log_{x}3.

Find the second order derivatives of the following : x^{3}.logx

Find the second order derivatives of the following : log(logx)

If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.

If y = log (log 2x), show that xy_{2} + y_{1} (1 + xy_{1}) = 0.

Find the n^{th} derivative of the following : log (ax + b)

If y = A cos (log x) + B sin (log x), show that x^{2}y^{2} + xy_{1} + y = 0.

If f(x) = log_{x} (log x) then f'(e) is ______

If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______

If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`

If y = 5^{x}. x^{5}. x^{x}. 5^{5} , find `("d"y)/("d"x)`

If y = `(sin x)^sin x`^{ }, then `"dy"/"dx"` = ?

The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.

lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______

If y = tan^{-1} `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.

`d/dx(x^{sinx})` = ______

`"d"/"dx" [(cos x)^(log x)]` = ______.

If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`

`8^x/x^8`

`log [log(logx^5)]`

If x^{m} . y^{n} = (x + y)^{m+n}, prove that `"dy"/"dx" = y/x`

If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.

`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.

`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.

If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.

If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.

If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to

Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals

If y = `x^(x^2)`, then `dy/dx` is equal to ______.

Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.

If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.

The derivative of x^{2x} w.r.t. x is ______.

Find `dy/dx`, if y = (sin x)^{tan x} – x^{log x}.

If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`

The derivative of log x with respect to `1/x` is ______.

Find `dy/dx, if y = (logx)^x`

Evaluate: `intlog x dx`