Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

Differentiate Each of the Following from First Principle: E X 2 + 1 - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]

Advertisement Remove all ads

Solution

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( e^{x^2 + 1} \right) = \lim_{h \to 0} \frac{e^{(x + h )^2 + 1} - e^{x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{x^2 + h^2 + 2xh + 1} - e^{x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{x^2 + 1} e^{h^2 + 2xh} - e^{x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{x^2 + 1} \left( e^{h\left( h + 2x \right)} - 1 \right)}{h} \times \frac{\left( h + 2x \right)}{\left( h + 2x \right)}\]
\[ = e^{x^2 + 1} \lim_{h \to 0} \frac{e^{h\left( h + 2x \right)} - 1}{h\left( h + 2x \right)} \lim_{h \to 0} \left( h + 2x \right)\]
\[ = e^{x^2 + 1} \left( 1 \right) \left( 2x \right)\]
\[ = 2x e^{x^2 + 1}\]

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.2 | Q 3.08 | Page 26

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×