Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Short Note
Determine the position of the centroid of the plane lamina. Shaded portion is removed.
Advertisement Remove all ads
Solution
FIGURE | AREA (mm2) |
X co-ordinate Of centroid (mm) |
Y co-ordinate Of centroid (mm) | Ax (mm2) | Ay (mm2) |
Rectangle | 120 x 100 =12000 | `120/2=60` | `120/2=60` | 720000 | 600000 |
Triangle | `1/2`120 x 60 =3600 | `120/3=40` | `-60/2=60` | 144000 | -72000 |
Semicircle | `1/2`𝝅 x 602 =1800 𝝅 =5654.8668 |
`120/2=60` | `100+(4∗60)/(3x)` =125.4648 |
339292.01 | 709486.68 |
Circle (Removed) |
- 𝝅 x 402 =5026.5482 |
`120/2=60` | 100 | -301592.89 | -502654.82 |
Total | 16228.32 | 901699.12 | 734831.86 |
`(Σ Ax)/(Σ A)=(901699.12)/(16228.32)= 55.56 mm`
`(Σ Ay)/(Σ A)=(734831.86)/(16228.32)= 45.28 mm`
Centroid is at (55.56,45.28)mm
Concept: Centroid for Plane Laminas
Is there an error in this question or solution?