###### Advertisements

###### Advertisements

Derive the expression for the magnetic field due to a solenoid of length ‘2l’, radius ‘a’ having ’n’ number of turns per unit length and carrying a steady current ‘I’ at a point

on the axial line, distance ‘r’ from the centre of the solenoid. How does this expression compare with the axial magnetic field due to a bar magnet of magnetic moment ‘m’?

###### Advertisements

#### Solution

Consider a solenoid of length 2l, radius a and having n turns per unit length. It is carrying a current I.

We have to evaluate the axial field at a point P at a distance r from the centre of the solenoid

Consider a circular element of thickness dx of the solenoid at a distance x from its centre.

The magnitude of the field due to this circular loop carrying a current I is given as

`dB=(mu_0dxnIa^2)/(2[(r-x)^2+a^2]^(3/2))`

The magnitude of the total field is obtained by integrating over all the elements from x = −l to x = +l.

`B=(mu_0nIa^2)/2int_(-1)^(+1)dx/(2[(r-x)^2+a^2]^(3/2))`

Consider the far axial field of the solenoid, so r ≫a and r≫l. Hence, we have

[(r-x)^{2}+a^{2}]^{3/2} ≈ r^{3}

So, we get

`B=(mu_0nIa^2)/(2r^3)int_(-1)^(+1)dx`

`B=(mu_0nIa^2)/(2r^3)2l`

The magnitude of the magnetic moment of the solenoid is

m Total number of turns current cross-sectional area

m=(nx2l)xIx(πa^{2})

Therefore, we get the magnetic field as

`B=(mu_0)/(4pi) (2m)/r^3`

This is the expression for magnetic field due to a solenoid on the axial line at a distance r from the centre.

This magnetic field is also the field due to a bar magnet of magnetic moment m.

#### APPEARS IN

#### RELATED QUESTIONS

Use this law to obtain the expression for the magnetic field inside an air cored toroid of average radius '*r*', having '*n*' turns per unit length and carrying a steady current *I*.

An observer to the left of a solenoid of N turns each of cross section area 'A' observes that a steady current I in it flows in the clockwise direction. Depict the magnetic field lines due to the solenoid specifying its polarity and show that it acts as a bar magnet of magnetic moment *m* = NIA.

A magnetic field of 100 G (1 G = 10^{−4} T) is required which is uniform in a region of linear dimension about 10 cm and area of cross-section about 10^{−3} m^{2}. The maximum current-carrying capacity of a given coil of wire is 15 A and the number of turns per unit length that can be wound round a core is at most 1000 turns m^{−1}. Suggest some appropriate design particulars of a solenoid for the required purpose. Assume the core is not ferromagnetic.

Define self-inductance of a coil.

A wire AB is carrying a steady current of 6 A and is lying on the table. Another wire CD carrying 4 A is held directly above AB at a height of 1 mm. Find the mass per unit length of the wire CD so that it remains suspended at its position when left free. Give the direction of the current flowing in CD with respect to that in AB. [Take the value of g = 10 ms^{−2}]

How is the magnetic field inside a given solenoid made strong?

The magnetic field inside a tightly wound, long solenoid is B = µ_{0} ni. It suggests that the field does not depend on the total length of the solenoid, and hence if we add more loops at the ends of a solenoid the field should not increase. Explain qualitatively why the extra-added loops do not have a considerable effect on the field inside the solenoid.

A long solenoid of radius 2 cm has 100 turns/cm and carries a current of 5 A. A coil of radius 1 cm having 100 turns and a total resistance of 20 Ω is placed inside the solenoid coaxially. The coil is connected to a galvanometer. If the current in the solenoid is reversed in direction, find the charge flown through the galvanometer.

A circular coil of one turn of radius 5.0 cm is rotated about a diameter with a constant angular speed of 80 revolutions per minute. A uniform magnetic field B = 0.010 T exists in a direction perpendicular to the axis of rotation. Suppose the ends of the coil are connected to a resistance of 100 Ω. Neglecting the resistance of the coil, find the heat produced in the circuit in one minute.

The magnetic field B inside a long solenoid, carrying a current of 5.00 A, is 3.14 × 10^{−2} T. Find the number of turns per unit length of the solenoid.

A long solenoid is fabricated by closely winding a wire of radius 0.5 mm over a cylindrical nonmagnetic frame so that the successive turns nearly touch each other. What would be the magnetic field B at the centre of the solenoid if it carries a current of 5 A?

A copper wire having resistance 0.01 ohm in each metre is used to wind a 400-turn solenoid of radius 1.0 cm and length 20 cm. Find the emf of a battery which when connected across the solenoid will cause a magnetic field of 1.0 × 10^{−2} T near the centre of the solenoid.

A tightly-wound solenoid of radius a and length l has n turns per unit length. It carries an electric current i. Consider a length dx of the solenoid at a distance x from one end. This contains n dx turns and may be approximated as a circular current i n dx. (a) Write the magnetic field at the centre of the solenoid due to this circular current. Integrate this expression under proper limits to find the magnetic field at the centre of the solenoid. (b) verify that if l >> a, the field tends to B = µ_{0}ni and if a >> l, the field tends to `B =(mu_0nil)/(2a)` . Interpret these results.

A tightly-wound, long solenoid carries a current of 2.00 A. An electron is found to execute a uniform circular motion inside the solenoid with a frequency of 1.00 × 10^{8} rev s^{−1}. Find the number of turns per metre in the solenoid.

A tightly-wound, long solenoid is kept with its axis parallel to a large metal sheet carrying a surface current. The surface current through a width dl of the sheet is Kdl and the number of turns per unit length of the solenoid is n. The magnetic field near the centre of the solenoid is found to be zero. (a) Find the current in the solenoid. (b) If the solenoid is rotated to make its axis perpendicular to the metal sheet, what would be the magnitude of the magnetic field near its centre?

A current of 1.0 A is established in a tightly wound solenoid of radius 2 cm having 1000 turns/metre. Find the magnetic energy stored in each metre of the solenoid.

A long solenoid carrying a current produces a magnetic field B along its axis. If the current is doubled and the number of turns per cm is halved, the new value of magnetic field will be equal to ______.