Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 12
Advertisement Remove all ads

Derive an Expression for Drift Velocity of Free Electrons in a Conductor in Terms of Relaxation Time. - Physics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Derive an expression for drift velocity of free electrons in a conductor in terms of relaxation time.

Advertisement Remove all ads


If there are N electrons and the velocity of the ith electron at a given time is vi where, i = (1, 2, 3, …N), then

`1/N sum_(i-1)^N  V_1  = 0` (If there is no external field)

When an external electric field is present, the electrons will be accelerated due to this field by

`veca = (-evecE)/m`


− e = Negative charge of the electron

E = External field

m = Mass of an electron

Let vi be the velocity immediately after the last collision after which external field was experienced by the electron.

If vi is the velocity at any time t, then from the equation V = u + at, we obtain

`vecV_i = vecv_i - (evecE)/m  t    ........ (1)`

For all the electrons in the conductor, average value of vi is zero.

The average of vi is vd or drift velocity.

This is the average velocity experienced by an electron in an external electric field.

There is no fixed time after which each collision occurs. Therefore, we take the average time after which one collision takes place by an electron.

Let this time, also known as relaxation time, beτ. Substituting this in equation (i)

`vecv_i - o`

`t = tau`

`vecV_i = vecv_d`


`vecv_d = (-evecE)/m`

Negative sign shows that electrons drift opposite to the applied field.

Concept: Drift of Electrons and the Origin of Resistivity
  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads

View all notifications

      Forgot password?
View in app×