Advertisement Remove all ads

Derive an expression for drift velocity of electrons in a conductor. Hence deduce Ohm's law. - Physics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Derive an expression for  drift velocity of free electrons.

 Derive an expression for drift velocity of electrons in a conductor. Hence deduce Ohm's law.

Advertisement Remove all ads

Solution

(i) Free electrons are in continuous random motion. They undergo  change  in direction at each collision and the thermal velocities are randomly distributed in all directions.

∴ Average thermal velocity,`u=(u_1+u_2+....+u_n)/n " is Zero".....(1)`

The electric field E exerts an electrostatic force ‘−Ee’.

Acceleration of each electron is,`veca=(-evecE)/m " ......(2)"`

Where,

m → Mass of an electron

→ Charge on an electron

Drift velocity,

`vec(v_d)=(vec(v_1)+vec(v_2)+....+vec(v_n))/n`

`vec(v_d)=((vec(u_1)+vecat_1)+(vec(u_2)+vecat_2)+....+(vec(u_n)+vecat_n))/n`

Where,

`vecu_1,vecu_2->` Thermal velocities of the electrons

`vecatau_1,vecatau_2->` Velocity acquired by electrons

τ1, τ2 → Time elapsed after the collision

`vec(v_d)=((vec(u_1)+vec(u_2)+...+vecu_n))/n+(veca(vec(t_1)+vec(t_2)+...vec(t_n)))/n`

Since `(vec(u_1)+vec(u_2)+....vec(u_n))/n=0`

∴ vτ

Where,`t=(t_1+t_2+t_3....t_n)/n " is the average time elapsed"`

Substituting for from equation (2),

`vec(v_d)=(-evecE)/mt " ...(4)"`

As, `E=V/l`
From (4) we can write

`v_d=(eV)/(ml)τ`
Also,
`I=An""ev_d`
Therefore,
`I=An""e((eV)/(ml)τ)=(An""e^2τ)/(ml) V`

`or V/I=(ml)/(An""e^2τ)=R` .... (5)

As we can see all the parameter on the R.H.S of the equation 5 are constant given temperature. And it is known as Resistance of the electric conductor.

 

Concept: Drift of Electrons and the Origin of Resistivity
  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×