HSC Science (Computer Science) 12th Board ExamMaharashtra State Board
Account
It's free!

User


Login
Create free account


      Forgot password?
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution - If y=f(u) is a differentiable function of u and u = g(x) is a differentiable function of x then prove that y = f (g(x)) is a  differentiable function of x and - HSC Science (Computer Science) 12th Board Exam - Mathematics and Statistics

Question

Ify y=f(u) is a differentiable function of u and u = g(x) is a differentiable function of x then prove that y = f (g(x)) is a  differentiable function of x and

`(dy)/(dx)=(dy)/(du)*(du)/(dx)`

 

Solution

Let δx be a small increment in x.
Let δy and δu be the corresponding increments in y and u respectively

As δx → 0, δy → 0, δu → 0.
As u is differentiable function, it is continuous.

Consider the incrementary ratio `(deltay)/(deltax)`

`"We have ",(deltay)/(deltax)=(deltay)/(deltau)xx(deltau)/(deltax)`

Taking limit as δx → 0, on both sides,

`lim_(deltax->0)(deltay)/(deltax)=lim_(deltax->0)((delty)/(deltau)xx(deltau)/(deltax))`

`lim_(deltax->0)(deltay)/(deltax)=lim_(deltau->0)(deltay)/(deltau)xxlim_(deltax->0)(deltau)/(deltax)...(1)`

Since y is a differentiable function of u , `lim_(deltau->0)(deltay)/(deltau)` exists

and  `lim_(deltau->0)(deltay)/(deltax) ` exists as u is a differentiable function of x.

Hence, R.H.S. of (1) exists

`"now " lim_(deltau->0)(deltay)/(deltau)=(dy)/(du) and lim_(deltau->0)(deltau)/(deltax)=(du)/(dx)`

`lim_(deltax->0)(deltay)/(deltax)=(dy)/(du)xx(du)/(dx)`

Since R.H.S. exists, L.H.S. of (1) also exists and 

`lim_(deltax->0)(deltay)/(deltax)=(dy)/(dx)`

`dy/dx=(dy)/(du)xx(du)/(dx)`

 

Is there an error in this question or solution?

APPEARS IN

 2015-2016 (March) (with solutions)
Question 5.1.1 | 3 marks
 2013-2014 (March) (with solutions)
Question 5.1.1 | 3 marks
Solution for question: If y=f(u) is a differentiable function of u and u = g(x) is a differentiable function of x then prove that y = f (g(x)) is a  differentiable function of x and concept: null - Every Differentiable Function is Continuous but Converse is Not True. For the courses HSC Science (Computer Science), HSC Science (Electronics), HSC Arts, HSC Science (General)
S