#### Question

If y = f(x) is a differentiable function of x such that inverse function x = f^{–1} (y) exists, then prove that x is a differentiable function of y and `dx/dy=1/((dy/dx)) " where " dy/dx≠0`

clickto share

#### Solution

You need to to view the solution

Is there an error in this question or solution?

#### APPEARS IN

#### Related Questions VIEW ALL [2]

Solution for question: If y = f(x) is a differentiable function of x such that inverse function x = f^–1 (y) exists, then prove that x is a differentiable function of y and dx/dy=1/(dy/dx) where dy/dx≠0 concept: Derivative - Derivative of Inverse Function. For the courses HSC Arts, HSC Science (Computer Science), HSC Science (Electronics), HSC Science (General)