(cot54º/tan36º)+(tan20º/cot70º)−2 - Mathematics

Advertisements
Advertisements
Sum

`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`

Advertisements

Solution

We have,

`\frac{\cot 54^\text{o}}{\tan 36^\text{o}}+\frac{\tan20^\text{o}}{\cot70^\text{o}}-2`

`=\frac{\cot (90^\text{o}-36^\text{o})}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot(90^\text{o}-20^\text{o})}-2`

`=\frac{\tan 36^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\tan20^\text{o}}-2`

= 1 + 1 – 2 = 0

  Is there an error in this question or solution?

RELATED QUESTIONS

If the angle θ= –60º, find the value of cosθ.


If the angle θ = -60° , find the value of sinθ .


If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.


`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`

 


Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


If tan A = cot B, prove that A + B = 90


Write all the other trigonometric ratios of ∠A in terms of sec A.


What is the value of (cos2 67° – sin2 23°)?


Prove the following trigonometric identities.

`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`


Evaluate:

`sin80^@/(cos10^@)+sin59^@ sec31^@`


A triangle ABC is right angles at B; find the value of`(secAcosecA-tanAcotC)/sinB`


Find the value of x, if  tan x`=(tan60^@-tan30^@)/(1+tan60^@tan30^@)`


find the value of angle A, where 0° ≤ A ≤ 90°.

sin(90° - 3A).cosec42° = 1


Evaluate:

`(sin35^@cos55^@+cos35^@sin55^@)/(cosec^2 10^@-tan^2 80^@)`


Use tables to find cosine of 65° 41’


Use trigonometrical tables to find tangent of 37°


Use tables to find the acute angle θ, if the value of cos θ is 0.9848


Use tables to find the acute angle θ, if the value of tan θ is 0.7391


If 4 cos2 A – 3 = 0 and ≤ A ≤ 90°, then prove that:
cos 3 A = 4 cos3 A – 3 cos A


If the angle θ = –45° , find the value of tan θ.


Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)


If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.


∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.


If \[\cos \theta = \frac{2}{3}\]  find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]


If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]


Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]


If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\]  find the value of (sin A + cos A) sec A. 


If angles A, B, C to a ∆ABC from an increasing AP, then sin B = 


The value of cos 1° cos 2° cos 3° ..... cos 180° is 


Sin 2A = 2 sin A is true when A =


tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to 


Prove the following.

tan4θ + tan2θ = sec4θ - sec2θ


Without using trigonometric tables, prove that:

sec70° sin20° + cos20° cosec70° = 2


Prove that:

cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]


If sin θ =7/25, where θ is an acute angle, find the value of cos θ.


Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`


Evaluate: cos2 25° - sin2 65° - tan2 45°


Express the following in term of angles between 0°and 45°:
sin 59°+ tan 63°


Express the following in term of angles between 0°and 45°:
cosec 68° + cot 72°


Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.


Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`


Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`


Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.

cos(90° - A) · sec 77° = 1


Solve: 2cos2θ + sin θ - 2 = 0.


Find the value of the following:

`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`


Find the value of the following:

`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`


Find the value of the following:

tan 15° tan 30° tan 45° tan 60° tan 75°


Find the value of the following:

`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`


Find the value of the following:

sin 21° 21′


If tan θ = cot 37°, then the value of θ is


The value of tan 72° tan 18° is


The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is


The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is


The value of tan 1° tan 2° tan 3°…. tan 89° is


If tan θ = 1, then sin θ . cos θ = ?


If cot( 90 – A ) = 1, then ∠A = ?


`(sin 75^circ)/(cos 15^circ)` = ?


If sin 3A = cos 6A, then ∠A = ?


In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?


In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?


2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.


If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.


Prove the following:

tan θ + tan (90° – θ) = sec θ sec (90° – θ)


Share
Notifications



      Forgot password?
Use app×