∫cosx dx = _____________ - Mathematics and Statistics

Advertisements
Advertisements
MCQ
Fill in the Blanks

`int cos sqrtx` dx = _____________

Options

  • `2 [sqrtx sin sqrtx + cos sqrtx] + "c"`

  • `sqrtx sin sqrtx + cos sqrtx + "c"`

  • `2 [sqrtx cos sqrtx + sin sqrtx] + "c"`

  • `1/2 [sqrtx sin sqrtx - cos sqrtx] + "c"`

Advertisements

Solution

`2 [sqrtx sin sqrtx + cos sqrtx] + "c"`

  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - MCQ

RELATED QUESTIONS

Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


The value of \[\int\frac{1}{x + x \log x} dx\] is


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


`int "dx"/(9"x"^2 + 1)= ______. `


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : x9.sec2(x10)


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t.x:

cos8xcotx


Evaluate the following : `int (1)/(25 - 9x^2).dx`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int 1/(cos x - sin x)` dx = _______________


`int x^2/sqrt(1 - x^6)` dx = ________________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int (cos2x)/(sin^2x)  "d"x`


`int x/(x + 2)  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


`int sin^-1 x`dx = ?


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int dx/(1 + e^-x)` = ______


`int1/(4 + 3cos^2x)dx` = ______ 


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int ("d"x)/(x(x^4 + 1))` = ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Find `int dx/sqrt(sin^3x cos(x - α))`.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate `int(1 + x + x^2/(2!))dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


The value of `int dx/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate `int(1+x+x^2/(2!))dx`


Share
Notifications



      Forgot password?
Use app×