# ∫ Cos 4 X − Cos 2 X Sin 4 X − Sin 2 X D X - Mathematics

Sum
$\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx$

#### Solution

$\int\left( \frac{\cos4x - \cos2x}{\sin4x - \sin2x} \right)dx$
$= \int\frac{- 2\sin\left( \frac{4x + 2x}{2} \right)\sin\left( \frac{4x - 2x}{2} \right)}{2\cos\left( \frac{4x + 2x}{2} \right)\sin\left( \frac{4x - 2x}{2} \right)}dx \left[ \because \cos A - \cos B = - 2\sin \left( \frac{A + B}{2} \right)\sin \left( \frac{A - B}{2} \right) \text{and} \sin A - \sin B = 2\cos \left( \frac{A + B}{2} \right)\sin \left( \frac{A - B}{2} \right) \right]$
$= - \int\frac{\sin 3x}{\cos 3x}dx$
$= - \int\tan 3x dx$
$= \frac{- \text{ln }\left| \sec 3x \right|}{3} + C$
$= \frac{1}{3} \text{ln} \left( \left| \text{sec 3x} \right| \right)^{- 1} + C$
$= \frac{1}{3} \text{ln }\left| \cos 3x \right| + C$

Concept: Indefinite Integral Problems
Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 12 Maths
Chapter 19 Indefinite Integrals
Exercise 19.8 | Q 30 | Page 48