HSC Commerce (Marketing and Salesmanship) 12th Board ExamMaharashtra State Board
Account
It's free!

User


Login
Create free account


      Forgot password?
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution - If 'f' is continuous at x = 0, then find f(0). f(x)=(15x-3x-5x+1)/(xtanx) , x!=0 - HSC Commerce (Marketing and Salesmanship) 12th Board Exam - Mathematics and Statistics

Question

 If 'f' is continuous at x = 0, then find f(0).

`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`

Solution

`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`

`lim_(x->0)f(x)=lim_(x->0)(15^x-3^x-5^x+1)/(xtanx)  `

`=lim_(x->0)(3^x(5^x-1)-(5^x-1))/(xtanx) `

`=lim_(x->0)((3^x-1)(5^x-1))/(xtanx)`

`=lim_(x->0)([(5^x-1)/x][(3^x-1)/x])/ ((xtanx/x^2))                                                                                                  `

`=(log5.log3)/1                     `

`=log5.log3`

As function is continuous at x=0

`f(0)=lim_(x->0)f(x)`

f(0)=log5.log3

                 

  Is there an error in this question or solution?

APPEARS IN

 2014-2015 (March) (with solutions)
Question 3.1.2 | 3 marks

Reference Material

Solution for question: If 'f' is continuous at x = 0, then find f(0). f(x)=(15x-3x-5x+1)/(xtanx) , x!=0 concept: Continuous Function of Point. For the courses HSC Commerce (Marketing and Salesmanship), HSC Commerce
S