Advertisement Remove all ads
Advertisement Remove all ads
Sum
Considering only principal values separate into real and imaginary parts
`i^((log)(i+1))`
Advertisement Remove all ads
Solution
Let `Z=i^(log(i+1))`
`therefore logZ = log(1+i).logi`
But `log(i+1)=logsqrt2+itan^(-1)1 = logsqrt2+ipi/4`
and `logi=ipi/2`
`therefore log Z=(logsqrt2+ipi/4).ipi/2`
`=[1/2log2+ipi/4pi]/2`
`(-pi^2)/8+ipi/4log2=e^(pi^2/8+itheta)= e^(pi^2/8itheta)`
where `theta=pi/4log2`
`=e^(pi^2/8)[costheta+isintheta]`
∴ Real part of Z `=e^(pi^2/8)costheta=e^(pi^2/8)cos[pi/4log2]`
∴ Imaginary part of Z `=e^(pi^2/8)sin[pi/4log2]`
Concept: Separation of Real and Imaginary Parts of Logarithmic Functions
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads