Consider the following transportation problem
Destination | Availability | ||||
D1 | D2 | D3 | D4 | ||
O1 | 5 | 8 | 3 | 6 | 30 |
O2 | 4 | 5 | 7 | 4 | 50 |
O3 | 6 | 2 | 4 | 6 | 20 |
Requirement | 30 | 40 | 20 | 10 |
Determine an initial basic feasible solution using Vogel’s approximation method
Solution
Let ‘ai‘ denote the availability and ‘bj‘ denote the requirement.
Then, `sum"a"_"i"` = 30 + 50 + 20 = 100 and `sum"b"_"j"` = 30 + 40 + 20 + 10 = 100
Since `sum"a"_"i" = sum"b"_"j"`.
The given problem is a balanced transportation problem and we can get an initial basic feasible solution.
Vogel’s approximation method:
First allocation:
D1 | D2 | D3 | D4 | (ai) | penalty | |
O1 | 5 | 8 | 3 | 6 | 30 | (2) |
O2 | 4 | 5 | 7 | 4 | 50 | (1) |
O3 | 6 | (20)2 | 4 | 6 | 20/0 | (2) |
(bj) | 30 | 40/20 | 20 | 10 | ||
penalty | (1) | (3) | (1) | (2) |
The largest penalty = 3.
So allocate 20 units to the cell (O3, D2) which has the least cost in column D2
Second allocation:
D1 | D2 | D3 | D4 | (ai) | penalty | |
O1 | 5 | 8 | (20)3 | 6 | 30/10 | (2) |
O2 | 4 | 5 | 7 | 4 | 50 | (1) |
(bj) | 30 | 20 | 20/0 | 10 | ||
penalty | (1) | (3) | (4) | (2) |
Largest penalty = 4
So allocate min (20, 30) units to the cell (O1, D3) which has the least cost in column D3
Third allocation:
D1 | D2 | D4 | (ai) | penalty | |
O1 | 5 | 8 | 6 | 10 | (1) |
O2 | 4 | (20)5 | 4 | 50/30 | (1) |
(bj) | 30 | 20/10 | 10 | ||
penalty | (1) | (3) | (2) |
The largest penalty is 3.
So allocate min (20, 50) to the cell (O2, D2) which has the least cost in column D2.
Fourth allocation:
D1 | D4 | (ai) | penalty | |
O1 | 5 | 6 | 10 | (1) |
O2 | 4 | (10)4 | 30/20 | (0) |
(bj) | 30 | 10/0 | ||
penalty | (1) | (2) |
Largest penalty = 2.
So allocate min (10, 30) to cell (O2, D4) which has the least cost in column D4
Fifth allocation:
D1 | (ai) | penalty | |
O1 | (10)5 | 10/0 | – |
O2 | (20)4 | 20/0 | – |
(bj) | 30/10/0 | ||
penalty | (1) |
Largest penalty = 1.
Allocate min (30, 20) to cell (O2, D1) which has the least cost in column D1.
Finally allot the balance 10 units to cell (O1, D1)
We get the final allocation table as follows.
D1 | D2 | D3 | D4 | Availability | |
O1 | (10)5 | 8 | (20)3 | 6 | 30 |
O2 | (20)4 | (20)5 | 7 | (10)4 | 50 |
O3 | 6 | (20)2 | 4 | 6 | 20 |
Requirement | 30 | 40 | 20 | 10 |
Transportation schedule:
O1 → D1
O1 → D3
O2 → D1
O2 → D2
O2 → D4
O3 → D2
i.e x11 = 10
x13 = 20
x21 = 20
x22 = 20
x24 = 10
x32 = 20
Total cost is given by = (10 × 5) + (20 × 3) + (20 × 4) + (20 × 5) + (10 × 4) + (20 × 2)
= 50 + 60 + 80+ 100 + 40 + 40
= 370
Hence the minimum cost by YAM is ₹ 370.