CBSE (Commerce) Class 11CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Find the Centre and Radius of the Circle X2 + Y2 – 4x – 8y – 45 = 0 - CBSE (Commerce) Class 11 - Mathematics

Login
Create free account


      Forgot password?

Question

Find the centre and radius of the circle x2 + y2 – 4x – 8y – 45 = 0

Solution

The equation of the given circle is x2 + y2 – 4x – 8y – 45 = 0.

x2 + y2 – 4x – 8y – 45 = 0

⇒ (x2 – 4x) + (y– 8y) = 45

⇒ {x2 – 2(x)(2) + 22} + {y2 – 2(y)(4)+ 42} – 4 –16 = 45

⇒ (x – 2)2 + (y –4)2 = 65

⇒ (x – 2)2 + (y –4)2 = `(sqrt(65))^2`, which is of the form (x – h)2 + (y – k)2 = r2, where h = 2, k = 4, and `r = sqrt65`.

Thus, the centre of the given circle is (2, 4), while its radius is `sqrt65`

  Is there an error in this question or solution?

APPEARS IN

 NCERT Mathematics Textbook for Class 11 (with solutions)
Chapter 11: Conic Sections
Q: 7 | Page no. 241
Solution for question: Find the Centre and Radius of the Circle X2 + Y2 – 4x – 8y – 45 = 0 concept: Concept of Circle. For the courses CBSE (Commerce), CBSE (Arts), CBSE (Science)
S