Advertisement Remove all ads

Compute the Value of ∫ π 2 0 √ Sin X + Cos X D X Usingtrapezoidal Rule by Dividing into Six Subintervals. - Applied Mathematics 2

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Compute the value of `int_0^(pi/2) sqrt(sinx+cosx) dx` usingTrapezoidal rule by dividing into six Subintervals.

Advertisement Remove all ads

Solution

Let I = `int_0^(pi/2) sqrt(sinx+cosx) dx` 

Dividing limits into 6 subintervals . n=6

a = 0, `b=pi/2    thereforeh=(b-a)/n=pi/12`

`x_0=0` `x_1=pi/12` `x_2=(2pi)/12` `x_3=(3pi)/12` `x_4=(4pi)/12` `x_5=(5pi)/12` `x_6=(6pi)/12`
`y_0=1` `y_1=1.1067` `y_2=1.1688` `y_3=1.1892` `y_4=1.1688` `y_5=1.1067` `y_6=1`

Trapezoidal rule : `"I"=h/2[X+2R]`  -----------------(1)

𝑿=𝒔𝒖𝒎 𝒐𝒇 𝒆𝒙𝒕𝒓𝒆𝒎𝒆 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔= 𝟐 𝑹=𝒔𝒖𝒎 𝒐𝒇 𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔=𝟓.𝟕𝟒𝟎𝟐

`"I"=pi/(12xx2)(2+2(5.7402))` ……………….(from 1)

I = 1.7636

Concept: Numerical Integration‐ by Trapezoidal
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×