HSC Science (General) 12th Board ExamMaharashtra State Board
Share

Books Shortlist

# Discuss the Composition of Two S.H.M.S Along the Same Path Having Same Period. Find the Resultant Amplitude and Intial Phase. - HSC Science (General) 12th Board Exam - Physics

ConceptComposition of Two S.H.M.’S Having Same Period and Along Same Line

#### Question

Discuss the composition of two S.H.M.s along the same path having same period. Find the resultant amplitude and intial phase.

#### Solution

Analytical treatment:

i. Let the two linear S.H.M’s be given by equations,
x1 = A1 sin (ωt + α1)          …(1)

x2 = A2 sin (ωt + α2)           …(2)

where A1, A2 are amplitudes; α1, α2 are initial phase angles and x1, x2 are the displacement of two S.H.M’s in time ‘t’. ω is same for both S.H.M’s.

ii. The resultant displacement of the two S.H.M’s is given by,

x = x1 + x2                       ....(3)

iii. Using equations (1) and (2) , equation (3) can be written as,

x = A1 sin (ωt + α1) + A2 sin (ωt + α2)

= A1 [sin ωt cos α1 + cos ωt sin α1] + A2 [sin ωt cos α2 + cos ωt sin α2]

= A1 sin ωt cos α1 + A1 cos ωt sin α1 + A2 sin ωt cos α2 + A2 cos ωt sin α2

= [A1 sin ωt cos α1 + A2 sin ωt cos α2] + [A1 cos ωt sin α1 + A2 cos ωt sinα2]

∴ x = sin ωt [A1 cos α1 + A2 cos α2] + cos ωt [A1 sin α1 + A2 sin α2]                                …(4)

iv. Let A1 cos α1+ A2 cos α2 = R cos δ                           …(5)

and A1 sin α1 + A2 sin α2 = R sin δ                                 …(6)

v. Using equations (5) and (6), equation (4) can be written as,

x = sin ωt. R cos δ + cos ωt.R sin δ

= R [sin ωt cos δ + cos ωt sin δ]

∴ x = R sin (ωt + δ)                                                             ....(7)

Equation (7) represents linear S.H.M. of amplitude R and initial phase angle δ with same period.

Resultant amplitude (R):

Squaring and adding equations (v) and (vi) we get,

(A1 cos α1 + A2 cos α2)2 + (A1 sin α1 + A2 sin α2)2 = R2cos2δ + R2sin2δ

A12cos2 α1+ A22 cos2 α2 + 2A1 A2 cosα1 cosα2 +A12 sin2 α1 + A22sin2 α2 + 2A1A2 sinα1 sinα2 = R2 (cos2 δ + sin2 δ)

A12 (cos2 α1 + sin2 α1) + A22 (cos2 α2 + sin2 α2) +  2A1 A2 (cosα1 cosα2 + sinα1 sinα2) = R2

∴       A12 + A22 + 2A1 A2 cos (α1 - α2) = R2

"R"=+-sqrt(A_1^2+A_2^2+2A_1A_2cos(alpha_1-alpha_2))                                   ...........(8)

Equation (8) represents resultant amplitude of two S.H.M’s.

Resultant (intial) phase (δ):

Dividing equation (6) by (5), we get

(A_1sinalpha_1 +A_2sinalpha_2)/(A_1cosalpha_1+A_2cosalpha_2)=(Rsindelta)/(Rcosdelta)

therefore(A_1sinalpha_1 +A_2sinalpha_2)/(A_1cosalpha_1+A_2cosalpha_2)=tandelta

thereforedelta=tan^(-1)[(A_1sinalpha_1 +A_2sinalpha_2)/(A_1cosalpha_1+A_2cosalpha_2)]                                                   ..................(9)

Equation (9) represents resultant or intial phase of two S.H.M’s.

Is there an error in this question or solution?

#### APPEARS IN

2014-2015 (October) (with solutions)
Question 1.2 | 7.00 marks
Solution Discuss the Composition of Two S.H.M.S Along the Same Path Having Same Period. Find the Resultant Amplitude and Intial Phase. Concept: Composition of Two S.H.M.’S Having Same Period and Along Same Line.
S