CBSE (Commerce) Class 12CBSE
Share
Notifications

View all notifications

Let F, G And H Be Functions From R To R. Show that (F+G)Oh=Foh+Goh (F.G)Oh=(Foh).(Goh) - CBSE (Commerce) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Let fg and h be functions from to R. Show that

`(f + g)oh = foh + goh`

`(f.g)oh = (foh).(goh)`

Solution

To prove:

(f + g)oh = foh + goh

Consider:

`((f+g)oh)(x)`

= (f +  g)(h(x))

`= f(h(x)) + g(h(x))`

= (foh)(x) + (goh) (x)

= {(foh) + (goh)} (x)

:. ((f+g)oh) (x) = {(foh) +(goh) } (x)           ∀x ∈ R

Hence (f + g)oh =  foh + goh 

To prove

`(f.g)oh = (foh).(goh)`

Consider

`((f.g)oh) (x)`

`= (f . g)(h(x))`

`= f(h(x)).g(h(x))`

`=(foh)(x).(goh)(x)`

`={(foh).(goh)}(x)`

`:. ((f.g)oh)(x)  = {(foh).(goh)}(x)`   ∀x ∈ R

Hence `(f.g) oh = (foh).(goh)`

  Is there an error in this question or solution?

APPEARS IN

 NCERT Solution for Mathematics Textbook for Class 12 (2018 to Current)
Chapter 1: Relations and Functions
Q: 2 | Page no. 18
Solution Let F, G And H Be Functions From R To R. Show that (F+G)Oh=Foh+Goh (F.G)Oh=(Foh).(Goh) Concept: Composition of Functions and Invertible Function.
S
View in app×