#### My Profile

1. Inform you about time table of exam.

2. Inform you about new question papers.

3. New video tutorials information.

#### Question

Prove that the line segment joining the points of contact of two parallel tangents of a circle, passes through its centre.

#### Solution

#### Appears in these question papers

#### Similar questions VIEW ALL

Two circles touch each other externally at P. AB is a common tangent to the circles touching them at A and B. The value of ∠ L APB is

(A) 30°

(B) 45°

(C) 60°

(D) 90°

Points A(–1, *y*) and B(5, 7) lie on a circle with centre O(2, –3*y*). Find the values of* y*. Hence find the radius of the circle.

Prove that there is one and only one tangent at any point on the circumference of a circle.

In the given figure, PQ is a chord of length 8cm of a circle of radius 5cm. The tangents at P and Q intersect at a point T. Find the length TP

ABCD is a quadrilateral such that ∠D = 90°. A circle (O, r) touches the sides AB, BC, CD and DA at P,Q,R and If BC = 38 cm, CD = 25 cm and BP = 27 cm, find r.