Choose the correct alternative: The solution of dydx = 1 is ______. - Mathematics and Statistics

Advertisements
Advertisements
MCQ
Fill in the Blanks

Choose the correct alternative:

The solution of `dy/dx` = 1 is ______.

Options

  • x + y = c

  • xy = c

  • x2 + y2 = c

  • y – x = c

Advertisements

Solution

The solution of `dy/dx` = 1 is y – x = c.

Concept: Application of Differential Equations
  Is there an error in this question or solution?
Chapter 1.8: Differential Equation and Applications - Q.1

RELATED QUESTIONS

In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.


If the population of a country doubles in 60 years; in how many years will it be triple (treble) under the assumption that the rate of increase is proportional to the number of inhabitants?
(Given log = 20.6912, log 3 = 1.0986)


If a body cools from 80°C to 50°C at room temperature of 25°C in 30 minutes, find the temperature of the body after 1 hour.


If a body cools from 80°C to 50°C at room temperature of 25°C in 30 minutes, find the temperature of the body after 1 hour.


The rate of growth of bacteria is proportional to the number present. If initially, there were 1000 bacteria and the number doubles in 1 hour, find the number of bacteria after `2 1/2` hours.
[Take `sqrt2 = 1.414`]


The rate of disintegration of a radioactive element at any time t is proportional to its mass at that time. Find the time during which the original mass of 1.5 gm will disintegrate into its mass of 0.5 gm.


Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years, the population increased from 30,000 to 40,000.


A body cools according to Newton’s law from 100° C to 60° C in 20 minutes. The temperature of the surrounding being 20° C. How long will it take to cool down to 30° C?


A right circular cone has height 9 cm and radius of the base 5 cm. It is inverted and water is poured into it. If at any instant the water level rises at the rate of `(pi/"A")`cm/sec, where A is the area of the water surface A at that instant, show that the vessel will be full in 75 seconds.


Assume that a spherical raindrop evaporates at a rate proportional to its surface area. If its radius originally is 3 mm and 1 hour later has been reduced to 2 mm, find an expression for the radius of the raindrop at any time t.


The rate of growth of the population of a city at any time t is proportional to the size of the population. For a certain city, it is found that the constant of proportionality is 0.04. Find the population of the city after 25 years, if the initial population is 10,000. [Take e = 2.7182]


Radium decomposes at the rate proportional to the amount present at any time. If p percent of the amount disappears in one year, what percent of the amount of radium will be left after 2 years?


Choose the correct option from the given alternatives:

The decay rate of certain substances is directly proportional to the amount present at that instant. Initially there are 27 grams of substance and 3 hours later it is found that 8 grams left. The amount left after one more hour is


Choose the correct option from the given alternatives:

If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be


Choose the correct option from the given alternatives:

If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be


Show that the general solution of differential equation `"dy"/"dx" + ("y"^2 + "y" + 1)/("x"^2 + "x" + 1) = 0` is given by (x + y + 1) = (1 - x - y - 2xy).


The normal lines to a given curve at each point (x, y) on the curve pass through (2, 0). The curve passes through (2, 3). Find the equation of the curve.


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after t seconds.


A person’s assets start reducing in such a way that the rate of reduction of assets is proportional to the square root of the assets existing at that moment. If the assets at the beginning ax ‘ 10 lakhs and they dwindle down to ‘ 10,000 after 2 years, show that the person will be bankrupt in `2 2/9` years from the start.


The rate of depreciation `(dV)/ dt` of a machine is inversely proportional to the square of t + 1, where V is the value of the machine t years after it was purchased. The initial value of the machine was ₹ 8,00,000 and its value decreased ₹1,00,000 in the first year. Find its value after 6 years.


If the population of a town increases at a rate proportional to the population at that time. If the population increases from 40 thousand to 60 thousand in 40 years, what will be the population in another 20 years? `("Given" sqrt(3/2) = 1.2247)`


The rate of growth of bacteria is proportional to the number present. If initially, there were 1000 bacteria and the number doubles in 1 hour, find the number of bacteria after `5/2` hours  `("Given"  sqrt(2) = 1.414)`


Choose the correct alternative:

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Choose the correct alternative:

The integrating factor of `("d"y)/("d"x) + y` = e–x is


Choose the correct alternative:

The integrating factor of `("d"^2y)/("d"x^2) - y` = ex, is e–x, then its solution is


Choose the correct alternative:

The solution of `("d"y)/("d"x) + x^2/y^2` = 0 is


The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is ______


The solution of `("d"y)/("d"x) + y` = 3 is  ______


Integrating factor of `("d"y)/("d"x) + y/x` = x3 – 3 is ______


Find the population of city at any time t given that rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 30000 to 40000.

Solution: Let p be the population at time t.

Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.

∴ `"dp"/"dt" prop "p"`

∴ `"dp"/"dt"` = kp, where k is a constant.

∴ `"dp"/"p"` = k dt

On integrating, we get

`int "dp"/"p" = "k" int "dt"`

∴ log p = kt + c

Initially, i.e. when t = 0, let p = 30000

∴ log 30000 = k × 0 + c       

∴ c = `square`

∴ log p = kt + log 30000

∴ log p - log 30000 = kt

∴ `log("p"/30000)` = kt          .....(1)     

when t = 40, p = 40000

∴ `log (40000/30000) = 40"k"`

∴ k = `square`

∴ equation (1) becomes, `log ("p"/30000)` = `square`

∴ `log ("p"/30000) = "t"/40 log (4/3)`

∴ p = `square`


Bacteria increases at the rate proportional to the number of bacteria present. If the original number N doubles in 4 hours, find in how many hours the number of bacteria will be 16N.

Solution: Let x be the number of bacteria in the culture at time t.

Then the rate of increase of x is `("d"x)/"dt"` which is proportional to x.

∴ `("d"x)/"dt" ∝ x`

∴ `("d"x)/"dt"` = kx, where k is a constant

∴ `("d"x)/x` = kdt

On integrating, we get

`int ("d"x)/x = "k" int "dt"`

∴ log x = kt + c    .....(1)

∴ x = aekt where a = e

Initially, i.e.,when t = 0, let x = N

∴ N = aek(0)

∴ a = `square`

∴ a = N, x = Nekt    ......(2)

When t = 4, x = 2N

From equation (2), 2N = Ne4k

∴ e4k = 2

∴  e= `square`

Now we have to find out t, when x = 16N

From equation (2),

16N = Nekt 

∴ 16 = ekt 

∴ `"t"/4 = square` hours

Hence, number of bacteria will be 16N in `square` hours


If the population grows at the rate of 8% per year, then the time taken for the population to be doubled, is (Given log 2 = 0.6912).


The rate of decay of certain substance is directly proportional to the amount present at that instant. Initially, there are 27 gm of certain substance and 3 h later it is found that 8 gm are left, then the amount left after one more hour is ______.


The equation of tangent at P(- 4, - 4) on the curve x2 = - 4y is ______.


The bacteria increases at the rate proportional to the number of bacteria present. If the original number 'N' doubles in 4 h, then the number of bacteria in 12 h will be ____________.


If the lengths of the transverse axis and the latus rectum of a hyperbola are 6 and `8/3` respectively, then the equation of the hyperbola is ______.


If r is the radius of spherical balloon at time t and the surface area of balloon changes at a constant rate K, then ______.


The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 7 hours, then in 35 hours its number would be ______.


The length of the perimeter of a sector of a circle is 24 cm, the maximum area of the sector is ______.


The rate of growth of bacteria is proportional to the number present. If initially, there are 1000 bacteria and the number doubles in 1 hour, the number of bacteria after `21/2`  hours will be ______. `(sqrt(2) = 1.414)`


In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, complete the following activity to find the number of times the bacteria are increased in 12 hours.


The rate of disintegration of a radioactive element at time t is proportional to its mass at that time. The original mass of 800 gm will disintegrate into its mass of 400 gm after 5 days. Find the mass remaining after 30 days.

Solution: If x is the amount of material present at time t then `dx/dt = square`, where k is constant of proportionality.

`int dx/x = square + c` 

∴ logx = `square`

x = `square` = `square`.ec

∴ x = `square`.a where a = ec

At t = 0, x = 800

∴ a = `square`

At t = 5, x = 400

∴ e–5k = `square`

Now when t = 30 

x = `square` × `square` = 800 × (e–5k)6 = 800 × `square` = `square`.

The mass remaining after 30 days will be `square` mg.


If `(dy)/(dx)` = y + 3 > 0 and y = (0) = 2, then y (in 2) is equal to ______.


Bacteria increase at the rate proportional to the number of bacteria present. If the original number N doubles in 3 hours, find in how many hours the number of bacteria will be 4N?


Share
Notifications



      Forgot password?
Use app×