###### Advertisements

###### Advertisements

Choose the correct alternative:

If x = `1/5`, the value of `cos(cos^-1x + 2sin^-1x)` is

#### Options

`- sqrt(24/25)`

`sqrt(24/25)`

`1/5`

`- 1/5`

###### Advertisements

#### Solution

**`- 1/5`**

#### APPEARS IN

#### RELATED QUESTIONS

Find the principal value of `sec^-1 (2/sqrt(3))`

Find the principal value of `cot^-1 (sqrt(3))`

Find the principal value of `"cosec"^-1 (- sqrt(2))`

Find the value of `tan^-1 (sqrt(3)) - sec^-1 (- 2)`

Find the value of `sin^-1 (- 1) + cos^-1 (1/2) + cot^-1 (2)`

Find the value of `cot^-1(1) + sin^-1 (- sqrt(3)/2) - sec^-1 (- sqrt(2))`

Choose the correct alternative:

The value of sin^{–1}(cos x), 0 ≤ x ≤ π is

Choose the correct alternative:

If `sin^-1x + "cosec"^-1 5/4 = pi/2`, then the value of x is

Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation cos^{–1} (x) – 2sin^{–1}(x) = cos^{–1} (2x) is equal to ______.

Given that the inverse trigonometric function take principal values only. Then, the number of real values of x which satisfy `sin^-1((3x)/5) + sin^-1((4x)/5) = sin^-1x` is equal to ______.