Advertisements
Advertisements
Choose the correct alternative:
If the regression equation X on Y is 3x + 2y = 26, then b_{xy} equal to
Options
`3/2`
`2/3`
` 3/2`
`  2/3`
Advertisements
Solution
` 2/3`
APPEARS IN
RELATED QUESTIONS
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" =  1.2, "b"_"XY" =  0.3` Find Correlation coefficient between X and Y.
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" =  1.2, "b"_"XY" =  0.3` Find estimate of Y for X = 50.
You are given the following information about advertising expenditure and sales.
Advertisement expenditure (₹ in lakh) (X) 
Sales (₹ in lakh) (Y)  
Arithmetic Mean  10  90 
Standard Mean  3  12 
Correlation coefficient between X and Y is 0.8
 Obtain the two regression equations.
 What is the likely sales when the advertising budget is ₹ 15 lakh?
 What should be the advertising budget if the company wants to attain sales target of ₹ 120 lakh?
An inquiry of 50 families to study the relationship between expenditure on accommodation (₹ x) and expenditure on food and entertainment (₹ y) gave the following results:
∑ x = 8500, ∑ y = 9600, σ_{X} = 60, σ_{Y} = 20, r = 0.6
Estimate the expenditure on food and entertainment when expenditure on accommodation is Rs 200.
In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:
Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information
 The mean values of X and Y.
 Correlation coefficient between X and Y.
 Standard deviation of Y.
For 50 students of a class, the regression equation of marks in statistics (X) on the marks in accountancy (Y) is 3y − 5x + 180 = 0. The variance of marks in statistics is `(9/16)^"th"` of the variance of marks in accountancy. Find the correlation coefficient between marks in two subjects.
For a bivariate data: `bar x = 53, bar y = 28,` b_{YX} =  1.5 and b_{XY} =  0.2. Estimate Y when X = 50.
The equations of two regression lines are x − 4y = 5 and 16y − x = 64. Find means of X and Y. Also, find correlation coefficient between X and Y.
In a partially destroyed record, the following data are available: variance of X = 25, Regression equation of Y on X is 5y − x = 22 and regression equation of X on Y is 64x − 45y = 22 Find
 Mean values of X and Y
 Standard deviation of Y
 Coefficient of correlation between X and Y.
If the two regression lines for a bivariate data are 2x = y + 15 (x on y) and 4y = 3x + 25 (y on x), find
 `bar x`,
 `bar y`,
 b_{YX}
 b_{XY}
 r [Given `sqrt0.375` = 0.61]
The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.
Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.
The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.
Choose the correct alternative:
If b_{yx} < 0 and b_{xy} < 0, then r is ______
Choose the correct alternative:
Find the value of the covariance between X and Y, if the regression coefficient of Y on X is 3.75 and σ_{x} = 2, σ_{y} = 8
State whether the following statement is True or False:
If b_{yx} = 1.5 and b_{xy} = `1/3` then r = `1/2`, the given data is consistent
State whether the following statement is True or False:
If b_{xy} < 0 and b_{yx} < 0 then ‘r’ is > 0
State whether the following statement is True or False:
The following data is not consistent: b_{yx} + b_{xy} =1.3 and r = 0.75
State whether the following statement is True or False:
Corr(x, x) = 0
If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______
If u = `(x  20)/5` and v = `(y  30)/4`, then b_{yx} = ______
The geometric mean of negative regression coefficients is ______
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
ADVERTISEMENT (x) (₹ in lakhs) 
DEMAND (y) (₹ in lakhs) 

Mean  10  90 
Variance  9  144 
Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?
The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Find the value of the correlation coefficient `("Given" sqrt(0.933) = 0.9667)`
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient