Advertisements
Advertisements
Choose the correct alternative:
If r = 0.5, σ_{x} = 3, `σ_"y"^2` = 16, then b_{yx} = ______
Options
0.375
0.667
2.667
0.093
Advertisements
Solution
0.667
APPEARS IN
RELATED QUESTIONS
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" =  1.2, "b"_"XY" =  0.3` Find estimate of Y for X = 50.
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" =  1.2, "b"_"XY" =  0.3` Find estimate of X for Y = 25.
From the data of 7 pairs of observations on X and Y, following results are obtained.
∑(x_{i}  70) =  35, ∑(y_{i}  60) =  7,
∑(x_{i}  70)^{2} = 2989, ∑(y_{i}  60)^{2} = 476,
∑(x_{i}  70)(y_{i}  60) = 1064
[Given: `sqrt0.7884` = 0.8879]
Obtain
 The line of regression of Y on X.
 The line regression of X on Y.
 The correlation coefficient between X and Y.
Bring out the inconsistency in the following:
b_{YX} + b_{XY} = 1.30 and r = 0.75
In a partially destroyed laboratory record of an analysis of regression data, the following data are legible:
Variance of X = 9
Regression equations:
8x − 10y + 66 = 0
and 40x − 18y = 214.
Find on the basis of above information
 The mean values of X and Y.
 Correlation coefficient between X and Y.
 Standard deviation of Y.
For 50 students of a class, the regression equation of marks in statistics (X) on the marks in accountancy (Y) is 3y − 5x + 180 = 0. The variance of marks in statistics is `(9/16)^"th"` of the variance of marks in accountancy. Find the correlation coefficient between marks in two subjects.
The equations of two regression lines are 10x − 4y = 80 and 10y − 9x = − 40 Find:
 `bar x and bar y`
 `"b"_"YX" and "b"_"XY"`
 If var (Y) = 36, obtain var (X)
 r
If b_{YX} = − 0.6 and b_{XY} = − 0.216, then find correlation coefficient between X and Y. Comment on it.
Choose the correct alternative:
If b_{yx} < 0 and b_{xy} < 0, then r is ______
Choose the correct alternative:
b_{yx} + b_{xy} ≥ ______
Choose the correct alternative:
If r = 0.5, σ_{x} = 3, σ_{y}^{2} = 16, then b_{xy} = ______
State whether the following statement is True or False:
If b_{yx} = 1.5 and b_{xy} = `1/3` then r = `1/2`, the given data is consistent
State whether the following statement is True or False:
If u = x – a and v = y – b then b_{xy} = b_{uv}
State whether the following statement is True or False:
Regression coefficient of x on y is the slope of regression line of x on y
If n = 5, ∑xy = 76, ∑x^{2} = ∑y^{2} = 90, ∑x = 20 = ∑y, the covariance = ______
b_{xy} + b_{yx} ≥ ______
If u = `(x  "a")/"c"` and v = `(y  "b")/"d"`, then b_{xy} = ______
If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______
Given the following information about the production and demand of a commodity.
Obtain the two regression lines:
ADVERTISEMENT (x) (₹ in lakhs) 
DEMAND (y) (₹ in lakhs) 

Mean  10  90 
Variance  9  144 
Coefficient of correlation between x and y is 0.8.
What should be the advertising budget if the company wants to attain the sales target of ₹ 150 lakhs?
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient
If n = 5, Σx = Σy = 20, Σx^{2} = Σy^{2} = 90 , Σxy = 76 Find Covariance (x,y)
Mean of x = 25
Mean of y = 20
`sigma_x` = 4
`sigma_y` = 3
r = 0.5
b_{yx} = `square`
b_{xy} = `square`
when x = 10,
`y  square = square (10  square)`
∴ y = `square`
b_{xy} . b_{yx} = ______.
b_{xy} + b_{yz} ≥ ______.