Tamil Nadu Board of Secondary EducationHSC Science Class 11

Choose the correct alternative: If pv = 81, then dpdvdpdv at v = 9 is - Mathematics

Advertisements
Advertisements
MCQ

Choose the correct alternative:

If pv = 81, then `"dp"/"dv"` at v = 9 is

Options

  • 1

  • – 1

  • 2

  • – 3

Advertisements

Solution

– 1

Concept: Differentiability and Continuity
  Is there an error in this question or solution?
Chapter 10: Differential Calculus - Differentiability and Methods of Differentiation - Exercise 10.5 [Page 178]

APPEARS IN

Tamil Nadu Board Samacheer Kalvi Class 11th Mathematics Volume 1 and 2 Answers Guide
Chapter 10 Differential Calculus - Differentiability and Methods of Differentiation
Exercise 10.5 | Q 16 | Page 178

RELATED QUESTIONS

Find the derivatives of the following functions using first principle.

f(x) = – 4x + 7


Find the derivatives of the following functions using first principle.

f(x) = – x2 + 2


Find the derivatives from the left and from the right at x = 1 (if they exist) of the following functions. Are the functions differentiable at x = 1?

`f(x) = |x - 1|`


Find the derivatives from the left and from the right at x = 1 (if they exist) of the following functions. Are the functions differentiable at x = 1?

`f(x) = sqrt(1 - x^2)`


Determine whether the following function is differentiable at the indicated values.

f(x) = |x2 – 1| at x = 1


Determine whether the following function is differentiable at the indicated values.

f(x) = |x| + |x – 1| at x = 0, 1


Show that the following functions are not differentiable at the indicated value of x.

`f(x) = {{:(-x + 2, x ≤ 2),(2x - 4, x > 2):}` , x = 2


The graph of f is shown below. State with reasons that x values (the numbers), at which f is not differentiable.


If f(x) = |x + 100| + x2, test whether f’(–100) exists.


Examine the differentiability of functions in R by drawing the diagram

|sin x|


Examine the differentiability of functions in R by drawing the diagram

|cos x|


Choose the correct alternative:

It is given that f'(a) exists, then `lim_(x -> "a") (xf("a") - "a"f(x))/(x - "a")` is


Choose the correct alternative:

If f(x) = `{{:(x + 1,  "when"   x < 2),(2x - 1,  "when"  x ≥ 2):}` , then f'(2) is


Choose the correct alternative:

If g(x) = (x2 + 2x + 1) f(x) and f(0) = 5 and `lim_(x -> 0) (f(x) - 5)/x` = 4, then g'(0) is


Share
Notifications



      Forgot password?
Use app×