Advertisement
Advertisement
MCQ
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Options
0
3
9
– 9
Advertisement
Solution
Let I = `int_(-9)^9 x^3/(4 - x^2)*dx`
Let f(x) = `x^3/(4 - x^2)`
∴ f(– x) = `(-x)^2/(4 - (-x)^2`
= `-x^3/(4 - x^2)`
= – f(x)
∴ f(x) is an odd function.
∴ `int_(-9)^9 x^3/(4 - x^2)*dx = 0. ...[because int_("a")^"a" f(x) = 0, if f(x) "odd function"]`
Concept: Fundamental Theorem of Integral Calculus
Is there an error in this question or solution?