###### Advertisements

###### Advertisements

Choose correct alternative answer and fill in the blank.

Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is .........

#### Options

16 cm

8 cm

12 cm

32 cm

###### Advertisements

#### Solution

Let the chord be AB.

O be the centre and OC be the perpendicular drawn from the centre of the circle to the chord AB.

Perpendicular drawn from the centre of the circle to the chord bisects the chord.

AC = CB

OA is the radius = 10 cm

In Δ OAC,

OC^{2} + AC^{2} = OA^{2}

⇒ 6^{2} + AC^{2} = 10^{2}

⇒ 36 + AC^{2} = 100

⇒ AC^{2} = 64

⇒ AC = 8 cm

AC = CB = 8 cm

AB = AC + CB = 8 + 8 = 16 cm

#### RELATED QUESTIONS

In Figure 1, common tangents AB and CD to the two circles with centres 0_{1}and 0_{2 }intersect at E. Prove that AB = CD.

In the given figure, PQ is a chord of length 8cm of a circle of radius 5cm. The tangents at P and Q intersect at a point T. Find the length TP

Prove that in two concentric circles, the chord of the larger circle which touches the smaller circle, is bisected at the point of contact.

Fill in the blanks:

A point, whose distance from the centre of a circle is greater than its radius lies in __________ of the circle. (exterior/ interior)

Write True or False. Give reason for your answer.

A circle is a plane figure.

Prove that the intercept of a tangent between two parallel tangents to a circle subtends a right angle at center.

From an external point P, tangents PA and PB are drawn to the circle with centre O. If CD is the tangent to the circle at point E and PA = 14 cm. Find the perimeter of ABCD.

In fig. a circle touches all the four sides of quadrilateral ABCD with AB = 6cm, BC = 7cm, CD = 4cm. Find AD.

In the fig. a circle is inscribed in a quadrilateral ABCD in which ∠B = 90° if AD = 23cm,

AB = 29cm and DS = 5cm, find the radius of the circle.

Fill in the blank

A continuous piece of a circle is ............... of the circle

O is the centre of a circle of radius 10 cm. P is any point in the circle such that OP = 6 cm. A is the point travelling along the circumference. x is the distance from A to P. what are the least and the greatest values of x in cm? what is the position of the points O, P and A at these values?

In the given figure, O is the centre of the circle. If ∠AOB = 140° and ∠OAC = 50°; Find:

(i) ∠ACB, (ii) ∠OBC, (iii) ∠OAB, (iv) ∠CBA.

In the given figure ABC is an isosceles triangle and O is the centre of its circumcircle. Prove that AP bisects angle BPC .

Find the length of tangent drawn to a circle with radius 8 cm form a point 17 cm away from the center of the circle

In the given figure, a triangle ABC is drawn to circumscribe a circle of radius 3 cm such that the segments BC and DC into which BC is divided by the point of contact D, are of

lengths 6cm and 9cm respectively. If the area of 2 ΔABC = 54cm^{2} then find the lengths of sides AB and AC.

In the given figure, a cradle inscribed in a triangle ABC touches the sides AB, BC and CA at points D, E and F respectively. If AB = 14cm, BC = 8cm and CA=12 cm. Find the length AD, BE and CF.

In figure 1, O is the centre of a circle, PQ is a chord and PT is the tangent at P.

If ∠POQ = 70°, then ∠TPQ is equal to

In a cyclic quadrilateral *ABCD*, if *m *∠*A* = 3 (*m* ∠*C*). Find *m* ∠*A*.

In the given figure, if ∠*ABC* = 45°, then ∠*AOC *=

In the given figure, *O* is the centre of the circle and ∠*BDC* = 42°. The measure of ∠*ACB* is

In the given figure, two tangents *AB* and *AC* are drawn to a circle with centre *O* such that ∠*BAC* = 120°. Prove that *OA* = 2*AB*.

In the given figure, OQ : PQ = 3.4 and perimeter of Δ POQ = 60 cm. Determine PQ, QR and OP.

Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is ______.

The point of concurrence of all angle bisectors of a triangle is called the ______.

The circle which passes through all the vertices of a triangle is called ______.

Length of a chord of a circle is 24 cm. If distance of the chord from the centre is 5 cm, then the radius of that circle is ______.

The length of the longest chord of the circle with radius 2.9 cm is ______.

Radius of a circle with centre O is 4 cm. If l(OP) = 4.2 cm, say where point P will lie.

The lengths of parallel chords which are on opposite sides of the centre of a circle are 6 cm and 8 cm. If radius of the circle is 5 cm, then the distance between these chords is ______.

Find the length of the chord of a circle in the following when:

Radius is 13 cm and the distance from the centre is 12 cm

Find the length of the chord of a circle in the following when:

Radius is 1. 7cm and the distance from the centre is 1.5 cm

Find the diameter of the circle if the length of a chord is 3.2 cm and itd distance from the centre is 1.2 cm.

In the above figure, `square`XLMT is a rectangle. LM = 21 cm, XL = 10.5 cm. Diameter of the smaller semicircle is half the diameter of the larger semicircle. Find the area of non-shaded region.

In the given figure, O is the centre of a circle, chord PQ ≅ chord RS If ∠ POR = 70° and (arc RS) = 80°, find –

(1) m(arc PR)

(2) m(arc QS)

(3) m(arc QSR)

In the given figure, chord EF || chord GH. Prove that, chord EG ≅ chord FH. Fill in the blanks and write the proof.

In the given figure, seg MN is a chord of a circle with centre O. MN = 25, L is a point on chord MN such that ML = 9 and d(O,L) = 5. Find the radius of the circle.

**The figure given below shows a circle with center O in which diameter AB bisects the chord CD at point E. If CE = ED = 8 cm and EB = 4 cm,**

find the radius of the circle.

**In the following figure, OABC is a square. A circle is drawn with O as centre which meets OC at P and OA at Q.**

Prove that:

( i ) ΔOPA ≅ ΔOQC

( ii ) ΔBPC ≅ ΔBQA

**Draw two circles of different radii. How many points these circles can have in common? What is the maximum number of common points?**

**Suppose you are given a circle. Describe a method by which you can find the center of this circle.**

In the above figure, seg AB is a diameter of a circle with centre P. C is any point on the circle. seg CE ⊥ seg AB. Prove that CE is the geometric mean of AE and EB. Write the proof with the help of the following steps:

a. Draw ray CE. It intersects the circle at D.

b. Show that CE = ED.

c. Write the result using the theorem of the intersection of chords inside a circle. d. Using CE = ED, complete the proof.

In an equilateral triangle, prove that the centroid and center of the circum-circle (circumcentre) coincide.

In the given circle with diameter AB, find the value of x.

In Fig., chords AB and CD of the circle intersect at O. AO = 5 cm, BO = 3 cm and CO = 2.5 cm. Determine the length of DO.

ABC is a triangle with AB = 10 cm, BC = 8 cm and AC = 6 cm (not drawn to scale). Three circles are drawn touching each other with the vertices as their centres. Find the radii of the three circles.

**Use the figure given below to fill in the blank:**

Tangent to a circle is _______.

**Use the figure given below to fill in the blank:**

________ is a radius of the circle.

**Use the figure given below to fill in the blank:**

If the length of RS is 5 cm, the length of PQ = _______

Draw circle with diameter: 6 cm

In above case, measure the length of the radius of the circle drawn.

Draw a circle of radius 3.6 cm. In the circle, draw a chord AB = 5 cm. Now shade the minor segment of the circle.

Construct a triangle ABC with AB = 5 cm, ∠B = 60° and BC = 6. 4 cm. Draw the incircle of the triangle ABC.

Construct a triangle XYZ in which XY = YZ= 4.5 cm and ZX = 5.4 cm. Draw the circumcircle of the triangle and measure its circumradius.

The diameter of a circle is 12.6 cm. State, the length of its radius.

Can the length of a chord of a circle be greater than its diameter ? Explain.

Draw a circle of diameter 7 cm. Draw two radii of this circle such that the angle between these radii is 90°. Shade the minor sector obtained. Write a special name for this sector.

If the radius of a circle is 5 cm, what will its diameter be?

**Draw circle with the radii given below.**

2 cm

**Draw circle with the radii given below.**

3 cm

**Draw a circle with the radii given below.**

4 cm

Draw a circle of any radius. Show one diameter, one radius, and one chord on that circle.

In the table below, write the names of the points in the interior and exterior of the circle and those on the circle.

Diagram |
Points in the interior of the circle |
Points in the exterior of the circle |
Points on the circle |

The diameter of the circle is 52 cm and the length of one of its chord is 20 cm. Find the distance of the chord from the centre

The chord of length 30 cm is drawn at the distance of 8 cm from the centre of the circle. Find the radius of the circle

Find the length of the chord AC where AB and CD are the two diameters perpendicular to each other of a circle with radius `4sqrt(2)` cm and also find ∠OAC and ∠OCA

A chord is 12 cm away from the centre of the circle of radius 15 cm. Find the length of the chord

In a circle, AB and CD are two parallel chords with centre O and radius 10 cm such that AB = 16 cm and CD = 12 cm determine the distance between the two chords?

Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord

A chord is at a distance of 15 cm from the centre of the circle of radius 25 cm. The length of the chord is

In the figure, O is the centre of a circle and diameter AB bisects the chord CD at a point E such that CE = ED = 8 cm and EB = 4 cm. The radius of the circle is

AD is a diameter of a circle and AB is a chord If AD = 30 cm and AB = 24 cm then the distance of AB from the centre of the circle is

The ratio between the circumference and diameter of any circle is _______

A line segment which joins any two points on a circle is a ___________

The longest chord of a circle is __________

The radius of a circle of diameter 24 cm is _______

A part of circumference of a circle is called as _______

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

15 cm |

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

1760 cm |

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

24 m |

All the radii of a circle are _______________

The ______________ is the longest chord of a circle

A line segment joining any point on the circle to its center is called the _____________ of the circle

A line segment with its end points on the circle is called a ______________

Find the diameter of the circle

Radius = 10 cm

Find the diameter of the circle

Radius = 8 cm

Find the diameter of the circle

Radius = 6 cm

Find the radius of the circle

Diameter = 24 cm

Find the radius of the circle

Diameter = 30 cm

Find the radius of the circle

Diameter = 76 cm

Circles with centres A, B and C touch each other externally. If AB = 3 cm, BC = 3 cm, CA = 4 cm, then find the radii of each circle.

A, B, C are any points on the circle with centre O. If m(arc BC) = 110° and m(arc AB) = 125°, find measure arc AC.

In figure, O is the centre of a circle, chord PQ ≅ chord RS. If ∠POR = 70° and (arc RS) = 80°, find

(i) m(arc PR)

(ii) m(arc QS)

(iii) m(arc QSR)

In the figure, segment PQ is the diameter of the circle with center O. The tangent to the tangent circle drawn from point C on it, intersects the tangents drawn from points P and Q at points A and B respectively, prove that ∠AOB = 90°

**Given:** A circle inscribed in a right angled ΔABC. If ∠ACB = 90° and the radius of the circle is r.

**To prove:** 2r = a + b – c

In the figure, O is the centre of the circle, and ∠AOB = 90°, ∠ABC = 30°. Then find ∠CAB.

In the figure, a circle touches all the sides of quadrilateral ABCD from the inside. The center of the circle is O. If AD⊥ DC and BC = 38, QB = 27, DC = 25, then find the radius of the circle.

Circles with centres A, B and C touch each other externally. If AB = 36, BC = 32, CA = 30, then find the radii of each circle.

In the given figure, if ZRPS = 25°, the value of ZROS is ______

In the following figure, tangents PQ and PR are drawn to a circle such that ∠RPQ = 30°. A chord RS is drawn parallel to the tangent PQ, then ∠RQS.

If a number of circles touch a given line segment PQ at a point A, then their centres lie on the perpendicular bisector of PQ.

If a number of circles pass through the endpoints P and Q of a line segment PQ, then their centres lie on the perpendicular bisector of PQ.

If a hexagon ABCDEF circumscribe a circle, prove that AB + CD + EF = BC + DE + FA.

The tangent at a point C of a circle and a diameter AB when extended intersect at P. If ∠PCA = 110°, find ∠CBA see figure

If A, B, C and D are four points such that ∠BAC = 45° and ∠BDC = 45°, then A, B, C, D are concyclic.

The circumcentre of the triangle ABC is O. Prove that ∠OBC + ∠BAC = 90º.

In figure, ∠OAB = 30º and ∠OCB = 57º. Find ∠BOC and ∠AOC.

Prove that angle bisector of any angle of a triangle and perpendicular bisector of the opposite side if intersect, they will intersect on the circumcircle of the triangle.

Draw two acute angles and one obtuse angle without using a protractor. Estimate the measures of the angles. Measure them with the help of a protractor and see how much accurate is your estimate

In the given figure, O is the centre of the circle. Name all chords of the circle.

From the figure, identify a diameter.

From the figure, identify a chord.

From the figure, identify two points in the interior.

From the figure, identify a segment.

Is every diameter of a circle also a chord?

Is every chord of a circle also a diameter?

Say true or false:

Two diameters of a circle will necessarily intersect.

Say true or false:

The centre of a circle is always in its interior.

A figure is in the form of rectangle PQRS having a semi-circle on side QR as shown in the figure. Determine the area of the plot.

A circle of radius 3 cm with centre O and a point L outside the circle is drawn, such that OL = 7 cm. From the point L, construct a pair of tangents to the circle. Justify LM and LN are the two tangents.

If radius of a circle is 5 cm, then find the length of longest chord of a circle.

AB is a chord of a circle with centre O. AOC is diameter of circle, AT is a tangent at A.

Write answers to the following questions:

- Draw the figure using the given information.
- Find the measures of ∠CAT and ∠ABC with reasons.
- Whether ∠CAT and ∠ABC are congruent? Justify your answer.