###### Advertisements

###### Advertisements

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial

t^{2} – 3, 2t^{4} + 3t^{3} – 2t^{2} – 9t – 12

###### Advertisements

#### Solution

t^{2} - 3, 2t^{4} + 3t^{3} - 2t^{2} - 9t - 12

t^{2} - 3 = t^{2} + 0.t - 3

Since the remainder is 0,

Hence, t^{2} - 3 is a factor of 2t^{4} + 3t^{3} - 2t^{2} - 9t - 12

#### APPEARS IN

#### RELATED QUESTIONS

Obtain all other zeroes of 3x^{4} + 6x^{3} – 2x^{2} – 10x – 5, if two of its zeroes are `sqrt(5/3)` and - `sqrt(5/3)`

Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm

deg q(x) = deg r(x)

If the polynomial x^{4} – 6x^{3} + 16x^{2} – 25x + 10 is divided by another polynomial x^{2} – 2x + k, the remainder comes out to be x + a, find k and a.

Apply division algorithm to find the quotient q(x) and remainder r(x) on dividing f(x) by g(x) in the following f(x) = 10x^{4} + 17x^{3} − 62x^{2} + 30x − 3, g(x) = 2x^{2} + 7x + 1

Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm g(x) = 2x^{2} − x + 3, f(x) = 6x^{5} − x^{4} + 4x^{3} − 5x^{2} − x − 15

Find all zeros of the polynomial *f*(*x*) = 2*x*^{4} − 2*x*^{3} − 7*x*^{2} + 3*x* + 6, if its two zeros are `-sqrt(3/2)` and `sqrt(3/2)`

What must be subtracted from the polynomial f(x) = x^{4} + 2x^{3} − 13x^{2} − 12x + 21 so that the resulting polynomial is exactly divisible by x^{2} − 4x + 3 ?

If `x^3+ x^2-ax + b` is divisible by `(x^2-x)`,write the value of a and b.

Find all zeros of the polynomial 3x^{3} + 10x^{2} − 9x − 4 if one of its zero is 1.

Find the quotient and remainder of the following.

(4x^{3} + 6x^{2} – 23x + 18) ÷ (x + 3)

Find the quotient and remainder of the following.

(8y^{3} – 16y^{2} + 16y – 15) ÷ (2y – 1)

Find the quotient and remainder of the following.

(8x^{3} – 1) ÷ (2x – 1)

Find the quotient and remainder of the following.

(−18z + 14z^{2} + 24z^{3} + 18) ÷ (3z + 4)

The area of a rectangle is x^{2} + 7x + 12. If its breadth is (x + 3), then find its length

The base of a parallelogram is (5x + 4). Find its height if the area is 25x^{2} – 16

The sum of (x + 5) observations is (x^{3} + 125). Find the mean of the observations

Can x^{2} – 1 be the quotient on division of x^{6} + 2x^{3} + x – 1 by a polynomial in x of degree 5?